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Overview

» Accelerated predictive modeling will enable more sophisticated model-
based control of tokamak plasmas

» To enable rapid beam deposition prediction, a neural network model trained
on NUBEAM results has been generated

« Dimensionality reduction and input augmentation used to overcome
challenges of the problem (spatially varying profile data, time-history
dependence)

— Avoids need for recurrent, convolutional neural network, though this option will be
studied as an alternative

« Initial scans of model topology completed for accuracy and real-time
evaluation time

* |nitial applications demonstrated
— Current profile observer with Zeff and fast ion diffusivity estimation

This research was supported by the U.S. Department of Energy under contract number
DE-AC02-09CH11466.
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Advanced control capabilities can enable online shot planning to
optimize experimental operations and avoid machine limits

Will require reduced model based control and optimization techniques

Faster-than-real-time prediction

Forecast
future behavior of the Where we
shot \‘think will be
Estimate ? Supervisory control
plasma state from Where we Actuator | shut down the shot or change
limited measurements | \think we are plan mission requirements
Real-time prediction
Actuator planning
to optimize performance rr\:ihnelz t‘e'vveve
Where » + avoid machine limits
we want could go
to go

Can we make our models fast enough?
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Accelerated predictive modeling using neural networks
can enable more sophisticated real-time algorithms

* Neural networks have recently been developed for
approximating the results of computationally intensive
calculations
— Meneghini NF 2017, 2014 (TGLF, EPED), Citrin NF 2015 (QuaLiKiz)

« NUBEAM often takes 30% or more of TRANSP time

— Lower fidelity settings can speed up results but results become noisy

« Can a neural network be trained to reproduce the resulit of
NUBEAM?

» Potential applications

— _Fast buj[ realistic_ b_eam calculations_ for control-oriented simulations or use
in real-time predictive control algorithms

— Fast predictions to optimize neutron rate matching in TRANSP runs
— Prediction of fast ion pressure profile for real-time kinetic EFITs
— Control room tools to explore beam timing options prior to shot
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A data set was prepared based on the TRANSP
runs performed between NSTX-U shots (BEAST)

« Expanded the dataset with a scan of Z_4, anomalous
fast ion diffusivity, and edge neutral density

— Randomly selected ~1000 cases from the grid scan to
actually run for initial testing

—Used 10000 particles, 5ms NUBEAM time step

 Assigned 10% of ~300 shots in the dataset to the
‘testing’ data set, another 10% to ‘validation’ data
set

— No data from any simulations of the test shots is used in
training the model

— Data from the validation shots used to compare performance
of different model parameters

» Total of ~100k time slices
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To reduce dimensionality, spatial profiles in dataset were
projected onto a reduced set of modes

Example mean and modes: * Principle component analysis of
Safety factor profile training dataset used to identify
- most significant modes of each

profile

— Projected profile data onto reduced set
of modes, keeping enough modes to
describe >99.5% of data variance

# modes kept for each profile
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The beam slowing down time causes NUBEAM
results to depend on time history

« Simplest approach to modeling:

— Ignore time history, assume steady-state, only use instantaneous values of
Inputs

— Probably not always suitable for planned applications
» e.g., Beam modulation during control

 The next simplest approach:

— Expand inputs with filtered beam powers

= Multiple time constants to account for changes in slowing down time
— Not accounting for time history of plasma parameters

= Fewer inputs, fewer nodes to train on

= Plasma parameters evolve fairly slowly compared to slowing down time and beam
modulation time Ny Beamline 1A power, Run: 204118526

—— Unfiltered

 Future work: recurrent NN of — Soms

— More difficult to train, but may be
better suited to handling time
variation of all inputs (without greatly

expanding the number of inputs 5|
through filtering) ‘ |
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Inputs, outputs, and topology of the
neural network model

* Inputs: Multiple separately
— Profiles: trained neural networks | Qutputs:

" Te, Ne, G E Average,
= fast ion diffusivity Inputs standard

— Scalars: deviation,
= Beam powers

min/max

= Edge neutral density

" Zeff
= Shape parameters

« Outputs: Neural network

— Profiles:
= Beam heating to ions/electrons
= Beam driven current
= Beam torque Hidden layers (~100 nodes each)
= Fastion pressure
— Scalars:
= Neutron rate
= Shine through
= Charge-exchange and orbit loss

Input layer

Output layer
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Initial scan of neural network topology used to
assess accuracy vs. complexity trade-off
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Time traces of NN compare well with
__NUBEAM for shots in testing data set
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Time traces compare fairly well during
beam blip shots in testing data set
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Profiles show good agreement between
NUBEAM and neural network prediction
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Regression plots for training and validation data
set show good fitting and generalization
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Timing tests of real-time implementation
demonstrate sub-ms prediction time

* Model implemented in C++ and tested on NSTX-U real-
time computer (64 cores, 2.8Ghz, real-time kernel)

— Test included dimensionality reduction, normalization, neural
network evaluation, and projection of outputs

« Scan of number of layers and nodes per layer

* Uncertainty quantification NubeamNet calculation time
and sensitivity analysis: o e [eame compuer
. ® 1 layer
— Parallel model prediction = o s tper
exploiting multiple cores and 4 = B
advances in internodal . .
communication s : .
* Sub-ms timing results well- % . ® U
suited to faster-than-real- 3= . . °
time prediction goals ” . & O
— E.g., nonlinear model- ‘1t ,
predictive current profile control ®® " Nedespertayer
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NubeamNet enables real-time current profile observer
with estimation of Zeff and fast ion diffusivity

Extended Kalman

Filter
Actuators l

Predict
Te = f(Tp 1, up) + wy

ze = h(Zp—1, ug) + vy

'

Update

measurements

Reduced magnetic diffusion equation + NubeamNet

o
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Measurements

compare prediction to |-

l State and
parameter
estimates

Assumptions made for initial simulations:
T, bootstrap current, and geometric parameters fixed and known

Spitzer resistivity

Measurements
Neutron rate, plasma current, and
in-domain poloidal flux gradient (opt.)

States and parameters

Poloidal flux +
Zeff, and fast ion diffusivity (assumed flat)

15

'QIDNSTX-U

Neural network modeling of NUBEAM on NSTX-U, M.D. Boyer, APS-DPP October 2018



NubeamNet enables real-time current profile observer

with estimation of Zeff and fast ion diffusivity
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« Mismatch between predictions and measurements drives state estimate update
 NubeamNet enables real-time calculation of sensitivity of current drive and
neutron rate to parameter changes
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Poloidal flux profile converges to actual values, faster convergence
if in-domain flux gradient measurements are included
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Coefficient of determination

NUBEAM is just one part of an integrated predictive

model, but progress is being made on other modules
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Future work

« Compare results to recurrent, convolutional neural
networks
—May require more data, more computationally intensive

* Implement multi-threaded algorithm for evaluating
ensemble and generating gradients in real-time

* Implement in TRANSP for routine use of AFID/Zeff
fitting option

* Implement beam deposition optimization algorithm for
between shots and real-time use

* Expand to other machines
— Developing models for DIlI-D and KSTAR
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