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• Accelerated predictive modeling will enable more sophisticated model-
based control of tokamak plasmas

• To enable rapid beam deposition prediction, a neural network model trained 
on NUBEAM results has been generated

• Dimensionality reduction and input augmentation used to overcome 
challenges of the problem (spatially varying profile data, time-history 
dependence)
– Avoids need for recurrent, convolutional neural network, though this option will be 

studied as an alternative

• Initial scans of model topology completed for accuracy and real-time 
evaluation time

• Initial applications demonstrated
– Current profile observer with Zeff and fast ion diffusivity estimation

Overview

This research was supported by the U.S. Department of Energy under contract number
DE-AC02-09CH11466.
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Advanced control capabilities can enable online shot planning to 
optimize experimental operations and avoid machine limits

Will require reduced model based control and optimization techniques
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• Neural networks have recently been developed for 
approximating the results of computationally intensive 
calculations
– Meneghini NF 2017, 2014 (TGLF, EPED), Citrin NF 2015 (QuaLiKiz)

• NUBEAM often takes 30% or more of TRANSP time
– Lower fidelity settings can speed up results but results become noisy

• Can a neural network be trained to reproduce the result of 
NUBEAM?

• Potential applications
– Fast but realistic beam calculations for control-oriented simulations or use 

in real-time predictive control algorithms
– Fast predictions to optimize neutron rate matching in TRANSP runs
– Prediction of fast ion pressure profile for real-time kinetic EFITs
– Control room tools to explore beam timing options prior to shot

Accelerated predictive modeling using neural networks 
can enable more sophisticated real-time algorithms
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• Expanded the dataset with a scan of Zeff, anomalous 
fast ion diffusivity, and edge neutral density
– Randomly selected ~1000 cases from the grid scan to 

actually run for initial testing
– Used 10000 particles, 5ms NUBEAM time step

• Assigned 10% of ~300 shots in the dataset to the 
‘testing’ data set, another 10% to ‘validation’ data 
set
– No data from any simulations of the test shots is used in 

training the model
– Data from the validation shots used to compare performance 

of different model parameters
• Total of ~100k time slices

A data set was prepared based on the TRANSP 
runs performed between NSTX-U shots (BEAST)
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• Principle component analysis of 
training dataset used to identify 
most significant modes of each 
profile
– Projected profile data onto reduced set 

of modes, keeping enough modes to 
describe >99.5% of data variance

To reduce dimensionality, spatial profiles in dataset were 
projected onto a reduced set of modes

Example mean and modes:
Safety factor profile

# modes kept for each profile
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• Simplest approach to modeling:
– Ignore time history, assume steady-state, only use instantaneous values of 

inputs
– Probably not always suitable for planned applications

§ e.g., Beam modulation during control

• The next simplest approach:
– Expand inputs with filtered beam powers

§ Multiple time constants to account for changes in slowing down time
– Not accounting for time history of plasma parameters

§ Fewer inputs, fewer nodes to train on
§ Plasma parameters evolve fairly slowly compared to slowing down time and beam 

modulation time

The beam slowing down time causes NUBEAM 
results to depend on time history

• Future work: recurrent NN
– More difficult to train, but may be 

better suited to handling time 
variation of all inputs (without greatly 
expanding the number of inputs 
through filtering)
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• Inputs: 
– Profiles:

§ Te, ne, q
§ fast ion diffusivity

– Scalars:
§ Beam powers
§ Edge neutral density
§ Zeff
§ Shape parameters

• Outputs: 
– Profiles:

§ Beam heating to ions/electrons
§ Beam driven current
§ Beam torque
§ Fast ion pressure

– Scalars:
§ Neutron rate
§ Shine through
§ Charge-exchange and orbit loss

Inputs, outputs, and topology of the 
neural network model

Input layer

Hidden layers (~100 nodes each)

Output layer

Inputs
Outputs:
Average,
standard 
deviation,
min/max

Multiple separately 
trained neural networks

Neural network
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• Clear benefit to having 2-3 layers and 
50-100 nodes per layer (diminishing 
returns beyond this)

• Each quantity has unique response to 
topology changes
– May be optimal to have different # of 

nodes in each layer
– Optimization of topology will be studied

Initial scan of neural network topology used to 
assess accuracy vs. complexity trade-off

Very sensitive to # 
of layers at small # 
of nodes,
But much less 
sensitive at larger # 
nodes

Even large # nodes 
in a single layer 
barely matches a 
few nodes in 2 
layers

Continued 
improvement even 
at large # nodes per 
layer

Predictions for
validation dataset
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Time traces of NN compare well with 
NUBEAM for shots in testing data set

NUBEAM
NubeamNet
(shaded range
is one std. dev)

Beam 
driven 
current

Fast ion 
pressure

• Good 
matching of 
time history of 
current drive 
and fast ion 
pressure near 
axis

Neutron rate Orbit loss
• Also good 

matching of 
scalars like 
neutron rate 
and orbit loss
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Time traces compare fairly well during 
beam blip shots in testing data set

NUBEAM
NubeamNet

Beam driven current Fast ion press. 

• Good 
matching of 
time history of 
current drive 
and fast ion 
pressure near 
axis

Neutron rate

Orbit loss• Also good 
matching of 
scalars like 
neutron rate 
and orbit loss
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Profiles show good agreement between 
NUBEAM and neural network prediction

NUBEAM
NubeamNet

Fast ion press. 

Heating (ions) 
Current drive 

Torque (ions)

• Generally good 
matching, smooth 
profile predictions

• Torque from 
NUBEAM for 
some runs is 
spatially noisy –
NN smoothes this 
out
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• Log scale 
histograms

• R2 drops in 
testing data 
set but not too 
bad
– Will continue to 

optimize neural 
network 
topology, add 
more data, etc. 
to improve 
generalization

Regression plots for training and validation data 
set show good fitting and generalization

Training Validation
R2=0.945 R2=0.943

R2=0.971 R2=0.959
Fast ion 
pressure 

Fast ion 
pressure 

Neutron rate Neutron rate
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• Model implemented in C++ and tested on NSTX-U real-
time computer (64 cores, 2.8Ghz, real-time kernel)
– Test included dimensionality reduction, normalization, neural 

network evaluation, and projection of outputs
• Scan of number of layers and nodes per layer

Timing tests of real-time implementation 
demonstrate sub-ms prediction time

• Uncertainty quantification 
and sensitivity analysis:
– Parallel model prediction 

exploiting multiple cores and 
advances in internodal
communication 

• Sub-ms timing results well-
suited to faster-than-real-
time prediction goals
– E.g., nonlinear model-

predictive current profile control
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NubeamNet enables real-time current profile observer 
with estimation of Zeff and fast ion diffusivity

Assumptions made for initial simulations:
Te, bootstrap current, and geometric parameters fixed and known
Spitzer resistivity
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NubeamNet enables real-time current profile observer 
with estimation of Zeff and fast ion diffusivity

• Mismatch between predictions and measurements drives state estimate update
• NubeamNet enables real-time calculation of sensitivity of current drive and 

neutron rate to parameter changes

Plasma current Neutron rate

Zeff Anomalous fast ion diffusivity

Measurements

State estimates
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Poloidal flux profile converges to actual values, faster convergence 
if in-domain flux gradient measurements are included

Poloidal flux profile at 4 locations
No in-domain measurements used by 
observer

4 in-domain flux gradient 
measurements used by observer

Slow convergence in core 
(far from measurements, 
low resistivty)

Faster 
convergence 
with in-domain 
measurements
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NUBEAM is just one part of an integrated predictive 
model, but progress is being made on other modules

Genetic algorithms being used to 
choose hyperparameters that 
optimize trade-off of accuracy and 
execution time

J. Kunimune

Assumptions made in 
observer in previous 
section can be 
removed once these 
models are included
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• Compare results to recurrent, convolutional neural 
networks
– May require more data, more computationally intensive

• Implement multi-threaded algorithm for evaluating 
ensemble and generating gradients in real-time

• Implement in TRANSP for routine use of AFID/Zeff 
fitting option

• Implement beam deposition optimization algorithm for 
between shots and real-time use

• Expand to other machines
– Developing models for DIII-D and KSTAR

Future work


