Wave - plasma interactions in the ion cyclotron range of frequencies: theory and experiment in NSTX

NSTX IS STUDYING HIGH HARMONIC FAST WAVES IN HIGH BETA PLASMAS

- HHFW are compressional fast Alfvén waves
 - $\omega \sim \mathbf{k}_{\perp} \mathbf{V}_{A} \sim \mathbf{N} \Omega_{D} \sim (6 12) \Omega_{D}$
- plasma beta ~ 4% 38%
 - choose ω / k_{//} ~ electron thermal speed
 - strong electron absorption via transit time magnetic pumping and Landau damping :
 - ion cyclotron damping generally weak, except for energetic ions and low k_{//}
- For NSTX, find $k_{\perp} \rho_i \ge 1$ and $\lambda_{\perp} / a << 1$
- Since B_P ~ B_T, 2D magnetic equilibrium effects important

E X

 \mathbf{k}_{1}

RADIO FREQUENCY (RF) WAVES USED FOR HEATING AND CURRENT DRIVE

- ST's need auxiliary heating (H) and current drive (CD)
 - choose wave spectra for H or CD
 - absorption profile depends on plasma parameters
- HHFW are absorbed by electrons in high beta plasmas
 - competitive absorption by ions degrades CD efficiency

POWER SPECTRUM OF ANTENNA IS PROGRAMMABLE OVER A WIDE RANGE OF k_{II} (~ 2 to ~ 14 m⁻¹)

antenna extends almost 90° toroidally

Antenna phasing controls heating or current drive

HHFW STRONGLY HEATS ELECTRONS

CENTRAL ELECTRON HEATING PREDICTED BY THEORETICAL MODELS

HHFW HEATS FAST DEUTERIUM IONS INJECTED WITH NEUTRAL BEAMS

fast D⁺ tail builds up during and decays after HHFW

THEORY PREDICTS SIGNIFICANT ABSORPTION BY FAST IONS

- fast ion and electron absorption comparable
- no thermal ion absorption for this k_{//} range
- fast ion absorption degrades CD efficiency BUT
- fast ion absorption decreases at lower B_T , higher β
 - observed and predicted

CURRENT DRIVE INFERRED FROM DIFFERENCES IN LOOP VOLTAGE WITH PHASED WAVES

- circuit analysis (0D): $I_P = (V 0.5*I_P*dL_i/dt)/R_P + I_{BS} + I_{CD}$
 - ⊲>I_{CD} ~ 110 kA *inferred* vs 96 160 kA *predicted* by codes
- driven current consistent with previous tokamak experience

WAVE-PLASMA INTERACTIONS PLAY A CRITICAL ROLE IN NSTX RESEARCH

- HHFW provides means of electron heating
- Interaction between HHFW and fast ions observed
 - ion interaction decreases with increasing electron beta
- Initial evidence found for HHFW current drive
 - driven current consistent with modeling and previous FWCD experiments
 - higher T_e needed to achieve NSTX research goals

HHFW CURRENT DRIVE CONSISTENT WITH D-IIID AND TFTR CD EXPERIMENTS

C. Petty et al., Plasma Physics and Controlled Fusion **43** (2001) 1747

- Operation at higher Te required to meet NSTX goals
- Increased power and improved confinement should allow this