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MOTIVATION:    Investigate turbulent microinstabilities in NSTX and CMOD H-mode plasmas
exhibiting unusual plasma transport
- Remarkably good ion confinement and Resilient Te profiles on NSTX
- ITB formation on CMOD
- Identify underlying key plasma parameters

for control of plasma performance
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METHOD- GS2 and GYRO flux tube simulations
- Complete electron dynamics. 3 radii, 4 species.
- Linear electromagnetic; nonlinear, electrostatic calculations (CMOD)

Gyrokinetic Model Equations

Kotschenreuther, et al Comp. Phys. Comm. 88 128 (1995)
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Perturbed electrostatic potential:

Linearized gyrokinetic equation, ballooning representation, “s-a” MHD equilibrium:
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NSTX H-mode:
Electron Temperature Profile Resiliency

During H-mode
Te(r) remains resilient
electron density increases
ion temperature decreases

Examine microinstability
 Growth rates at 3 zones

What clamps
Electron temperature profile?
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NSTX: Examine Microinstability Growth
Rates at 3 Zones
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What is the Instability at 0.65r/a on NSTX?
What Effect Does It Have on Transport?
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    Character of fastest growing mode changes to ITG/TEM. 
This is an ETG-type microtearing mode, driven by (gradTe)/Te.
       If a(gradNs)/Ns and a(gradTi)/Ti=0, mode ~unchanged. 
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Summary: NSTX H-mode Gyrokinetic Results
Good ion transport appears due to stabilized ITG

Poor electron transport and resilient Te profiles as yet unexplained
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 CMOD Internal Transport Barrier
 TRIGGER time: Examine Microinstability Growth

Rates at 3 Zones
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NONLINEAR GS2 Simulations reproduce linear result
 ITB TRIGGER: Before ne peaks, region of reduced transport and
   stable ITG microturbulence is established without ExB shear

Quiescent, microturbulence in ITB region
Moderate microturbulence in plasma core
High microturbulence level outside half-radius

Just inside ITB

Outside ITB

In plasma core
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-Strongest driving force:
 grad Te/Te



SUMMARY:

Linear calculations of drift wave instabilities in the ion temperature gradient and
electron temperature gradient range of frequencies
Roughly consistent with improved ion confinement in NSTX and
improved confinement within and at ITB in CMOD H-mode plasmas

Remarkably good ion transport in NSTX H-mode (Gates, PoP 2002) would be
expected from stable ITG throughout plasma
Profile effects  (GYRO) may fully stabilize ITG everywhere.
Electron transport => q monotonic so unstable ETG at all r…MSE?

Resilient temperature profiles on NSTX may be maintained through ETG instabilities,
Nonlinear calculations needed. Tearing parity microturbulence found - in
contrast to tokamaks - effects on transport to be determined.

Internal transport Barrier on CMOD appears after off-axis RF heating, where
microstabilities quiescent.  Nonlinear calculations in ~agreement with linear.
Sawtooth propagation measurements confirm low transport in the region at the
trigger time (Wukitch, PoP, 2002).



GS2 Evolution of Linear Growth Rates for k^rI = 0.1 to 0.8 
Some stable, some unstable



NSTX r/a=0.8: ITG Range of Frequencies
Outside Core, ITG Range of Frequencies
Growth Rates and Eigenfunction at Most Unstable Wavelength



NSTX r/a=0.65: ITG Range of Frequencies

Growth Rates and Eigenfunction of Most Unstable Mode
                         - Tearing Parity
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GS2 criterion H-mode plasmas:

•GS2:  Linear, fully electromagnetic, 4 species
•Criteria: r/L<<1 for GS2, 

but profile effects can mix different wavelengths
=> r* stabilization (GYRO)

•NSTX  zone,   rho-star,       # ion gyroradii across plasma
          0.25r/a      r*=0.0185/0.6= 0.031     32
          0.65r/a           0.014    71
          0.80r/a           0.0064 157
CMOD

0.25r/a 0.008    122
0.45r/a 0.008   122
0.65r/a 0.006   167



Very Preliminary Results from GYRO Code
for CMOD: ITG Range of Frequencies

GYRO:  (R. Waltz, J. Candy, General Atomics)
Large software project for solution of gyrokinetic Maxwell eqns
 Simultaneous solution of electromagnetic physics

 (with kinetic electrons)
and global radial profile variations

Few initial runs with GYRO in fluxtube, circular mode only:
three radii at trigger time as for GS2 studies

Core:                        damped ITG mode
Outside ITB region:  converged ITG mode
In ITB region:            in progress 



NSTX:  Critical Gradient
Below or At Marginal Stability for ITG
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changes from ITG to TEM as grad Ti/a/Ti decreased.
Find two critical gradients,  for distinct ITG and TEM roots
ExB shearing rate ~ maximum growth rate: ITG likely stable
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NSTX: Far Above Critical Gradient for ETG Modes
ExB Shearing Rate<<Maximum Growth Rate

Fastest Growing ETG Drift Mode Wavelengths
and Growth Rates Decrease as gradTe/Te is Reduced

Higher Critical Gradient for ETG than ITG
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ITB Trigger Time:
Linear, Electromagnetic Gyrokinetic Calculations with GS2:
Drift wave Microturbulence at k^ri = 0.1 to 80.
Low k^rI:      ITG => cI

anomalous outside ITB
 TEM and ITG: already stabilized at and within ITB
High k^ri:     ETG driven by strong —Te => ce

anomalous at and outside ITB
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