### Barriers in different transport channels (e- and i-thermal, particle) and relation to pedestal structure

A. E. Hubbard, J.W. Hughes, D.G. Whyte *MIT Plasma Science and Fusion Center* 



C-Mod/NSTX Pedestal Workshop Sept 7-8, PPPL

# Edge Transport Barriers exist in multiple channels



- In general, edge transport barriers (aka H-mode, pedestal) form in multiple channels:
  - Ion thermal
  - Electron thermal
  - Multi-species particles
  - Momentum
- In H-modes, barriers in different channels often have roughly comparable extent and degree. However (as in core transport), this is not always the case!
- Both theorists and experimentalists often speak loosely of "the pedestal", or "pedestal width", usually meaning electron or total pressure pedestal.
- In both our measurements and our modeling, it is important to consider all channels (in particular thermal vs particle barriers) and their contributions to pedestal structure.

# Many examples of different pedestal structures exist

Alcator C-Mod

- To first order, widths of n<sub>e</sub>, T<sub>e</sub>, T<sub>i</sub> pedestals are often similar.
- This makes intuitive sense if ∇/n term is dominating E<sub>r</sub> well, suppressing turbulence.
- But, many measurable differences in structure and strength of barriers.
- Eg. T<sub>i</sub> widths can be larger than n<sub>e</sub> (JT-60U, DIII-D).
- Density widths can be wider at low n<sub>e</sub>, when neutrals penetrate further. n<sub>e</sub>(r) shifts wrt T<sub>e</sub> with gas puffing.
- Not many systematic comparisons of structure, width across channels are published.



A. Hubbard, Pedestal workshop 2010

# $T_i(r)$ can be quite different from $T_e(r)$

In high density, strongly coupled regime T<sub>i</sub>=T<sub>e</sub> to within error bars. (eg, C-Mod)

 In other cases, likely due to different neoclassical regime, lower coupling, the T<sub>i</sub> gradient is much weaker, hardly any "pedestal" (eg, D3D,NSTX).



Alcator

C-Mod

A. Hubbard, Pedestal workshop 2010

### Degree of transport suppression can differ, and scale differently

- For example, when  $S_{sep}$  is varied on C-Mod, n<sub>e</sub> and confinement (p<sub>e</sub>, T<sub>e</sub>) pedestals vary differently.
- The ideal regime would have ۲ independently **controlled** energy and particle barriers, to avoid impurity buildup and pressure limits.
- Fortunately, many fluctuations &  $\bullet$ waves do seem to affect D more than  $\chi$ .
  - eg QC mode in EDA, EHO in QH mode).
  - eg, LHCD reduces n<sub>e</sub>, raises T<sub>e</sub>.



#### -5 5 ne (10<sup>20</sup> m<sup>-3</sup>) C-Mod 3 Hughes APS 2 2009 Ip=800kA Not cryopumped Low Prad 0.1 8.0 HITER-98-Y2 8.0 0.6 -10 -5 5 $\delta R_{SEP}$ (mm)

δR<sub>SEP</sub> (mm)

-10



#### An extreme example is "I-mode"; strong thermal barrier, little or no particle barrier





Details of C-Mod I-mode regime in D. Whyte *et al*, Nucl Fusion **50** (Aug 2010) 105005

Another example, new "Enhanced H-mode" on NSTX, seems to change T more than density pedestals. *R Maingi, next talk.* 

- Steep T<sub>e</sub> pedestal
- L-mode density profile with broad SOL.



A. Hubbard, Pedestal Workshop 2010

# So, how to treat different barriers?



#### Experimentalists:

- US experiments can all now independently resolve the different pedestal structures to sufficient resolution! So, we need to **use** this information, collate and report individual width and height scalings in our past databases and, better, in controlled experimental scans! We no longer need to infer a pressure width from the height, though this can be a useful cross-check.
- Design experiments to elucidate apparently different dependences. Eg, for C-Mod,
  - Larger scans in upper and lower triangularity.
  - Scans in density from large to small neutral penetration.
  - Up-down magnetic balance.
  - Vary magnetic shear.

# **Theory and Simulation**



- Given we know that transport barriers in different channels can be, and often are, different in structure, width and strength, a complete model and prediction will have to take all channels into account, should give predictions for n, T<sub>e</sub>, T<sub>i</sub> pedestals. Ideally also rotation, which is complicated by pedestal "source".
  - This doesn't mean that 'pressure only' predictions are not useful!
- In my view, they will have to include both neoclassical and turbulence models, plus neutral fuelling. All likely to be important!
- Cannot neglect, or assume, the particle profile shape
  - Even though the core transport folks often do, it's kind of cheating...
  - As Stacey, Groebner, Callen et al have shown, changes in both D and V can be very important in barriers, and are hard to separate.
- Testable predictions, even qualitative, as to which channels are likely to have strongest suppression, widest barriers etc will be useful in guiding experiments.

# Specific questions for transport barrier physics raised by "I-mode".



- I-mode regime clearly separates transport channels.
  - Strong, H-mode-like thermal barrier, but with L-mode-like particle transport.
- Poses a number of questions
  - L-H transition conditions (and dependence on configuration!)
    - Do different SOL flows vs configuration play a role?
  - Mechanism for L-I transition reduced  $\chi$  without fluctuation suppression.
    - Change in relative phases of  $T_e$ ,  $n_e$ ,  $\phi$  fluctuations? (c.f. Terry, Newman et al)
    - Type and role of high-f fluctuations
  - Separate effects on  $\chi$  and D. Reminiscent of many ITBs. WHY?
    - Different effect of  $V_{\prime\prime}$  and  $V_{\perp}$  shears on heat vs particle transport, perhaps via effect on phases?
    - Different turbulent modes (k<sub>pol</sub>, freq) responsible, only some suppressed?
    - Different ratios of turbulent and residual  $\chi$ , D? (c.f. Malkov, Diamond)
    - Why NOT a particle transport bifurcation with an E<sub>r</sub> well?
  - Generation of 'intrinsic rotation', without density gradient.





- Edge transport barriers ("pedestal") involve multiple transport channels; e-, ion thermal, particle, momentum....
- The degree of transport suppression, and radial extent of the ۲ suppression, can vary significantly between channels.
- Both experiments and theory/simulation need to take them into account to develop a more complete understanding and prediction.
- Experiments already largely have the tools/resolution to study this. We need to use and report them more systematically.
- Models are also being developed which should be able to predict ۲ different channels. Comparisons/validation are key! Individual profiles may give more direct validation than pressure, which is a composite. A. Hubbard, TTF 2010