Edge and Boundary Topical Science Area

by S. L. Allen

Presented to DIII–D Program Advisory Committee

January 31– February 2, 2006

Outline - Boundary Topical Science Area Presentation

- Review recommendations from 2005 PAC Meeting
- Review results from 2005 campaign (highlights)
 - LTOA upgrades motivate new experiments
- New capabilities provided by the LTOA
- ITPA and ITER physics research needs guide planning for experiments
- Summary of 2006-7 Experimental Planning
 - Working groups: PSI, Heat flux control, Transport, AT Divertor
 - Boundary presentation to Research Council
- Boundary Topical Science Area Response to Charge
 - Impurity transport with (primarily) carbon walls
 - Rich boundary diagnostic set for comparison with codes (e.g. UEDGE, BOUT)

Recommendations from Previous PAC

- Recognized ¹³C migration and flow measurements in list of outstanding achievements
- "Excellent job in showing how .. research relates to ITER needs"
 - ¹³C experiments, ELM fluxes, wall gap experiments, UEDGE modeling
 - Emphases of past year are excellent and should be continued
- Inner divertor modification is high leverage PAC recommends
 - New divertor diagnostic measurements: probes, Penning gauges, fibers
- Wall flux measurements of ELMs expanded to disruptions
- Compatibility of AT scenarios with divertor operation not enough attention
 Puff and pump in hybrid started in 2005
- "PAC was puzzled by the DIII-D position on O₂ bake"
 - PAC recommends that it be reconsidered
 - Should be done at ITER wall temperatures
 - Under consideration, but may be 2007 (2006 short vent)

Outline - Boundary Topical Science Area Presentation

- Review recommendations from 2005 PAC Meeting
- Review results from 2005 campaign (highlights)
 - LTOA upgrades motivate new experiments
- New capabilities provided by the LTOA
- ITPA and ITER physics research needs guide planning for experiments
- Summary of 2006-7 Experimental Planning
 - Working groups: PSI, Heat flux control, Transport, AT Divertor
 - Boundary presentation to Research Council
- Boundary Topical Science Area Response to Charge
 - Impurity transport with (primarily) carbon walls
 - Rich boundary diagnostic set for comparison with codes (e.g. UEDGE, BOUT)

Argon "Puff and Pump" enrichment is greater in the closed upper divertor - ITER "dome" issue

The Radiative Divertor was Successfully Applied to "Hybrid" Operation

136-05/SLA/rs

Direct Measurements of Recycling and Impurity Influx Compared With UEDGE Modeling are Important to Guide ITER Operation

- Deuterium neutral distribution can be explained by recycling at the divertor target plates and neutral transport into the main chamber
- Poloidal core plasma fueling profile is determined by fueling in the divertor X-point region and neutral leakage from divertor
- Carbon is produced mainly at the divertor plates and walls, due to chemical sputtering processes

2-D DIII–D Data Shows Deuterium and Carbon Emission is Predominantly From The Divertor Region

• Plan: outer midplane views, high density operation, comparison with C-Mod picture frame data

UEDGE/DEGAS2: Core Plasma is Fueled Through Divertor X-Point Region and by Divertor Neutral Leakage

¹³C tracer injection in DIII-D has proven to be remarkably revealing (ITER tritium inventory)

Low ¹³C deposition found away from divertor

- Detecting main chamber ¹³C deposition requires higher sensitivity
 - ¹³C(p,γ)¹⁴N nuclear reaction
 resonance at the U. Wis. (D.G. Whyte)
 - 10X lower detection limit
 - If small poloidal sample is representative, accounts for ~1/3 of total
- ¹³C thermal oxidation facility (J.W Davis) at U. Toronto (J.W. Davis)
 - 20 tiles planned to be tested

Ion beam analysis facility University of Wisconsin

Oxidation facility University of Toronto

ELMs show Peeling-Ballooning structure and expel bursts of density at main wall

3D rendering of P-B mode structure

- Most unstable modes ²₀ from ELITE linear P-B instability are 18 ≤ n ≤ 21
- CIII emission structure suggests n ~ 17

Is and Te midplane scanning probe

2006: New midplane MiMES with probe capabilities

Divertor mirror deposition is temperature sensitive (~100°)

- Diagnostic plasma facing mirrors are listed as high-priority ITPA topic
 - ITER divertor mirrors will have deposition
- Mo mirrors were exposed in the Private Flux zone of Detached ELMing H-mode discharges
 - Room temperature (6 shots, 25 s)
 - -~100°C (not constant) (17 shots, 70 s)

Visible deposits were observed on the mirrors exposed at room temperature

No deposits were observed on the mirrors exposed at elevated temperature !!

- Plan to repeat in 2006 with constant temperature

Deposition in tile gaps is reduced at higher temperature

- Tritium co-deposition with carbon in tile gaps is a serious potential problem for ITER
- DiMES sample with a simulated tile gap 2 mm wide and 15 mm near the detached OSP in two sets of identical L-mode discharges
- First exposure was performed at room temperature, second exposure was with sample heated to 200°C
- C:D films deposited in the gap at room temperature were of the "soft" amorphous type with D/C atomic ratio of 0.3–0.6
- Amount of co-deposited deuterium in the heated exposure was an order of magnitude lower than at room temperature
- A rather high net carbon erosion rate of 3 nm/s was measured at the sample surface in heated exposure

2006: Repeat with controlled temperature

136-05/SLA/rs

DUST is identified as an important ITPA topic

- During dust DiMES experiments cameras with near IR filters observed individual dust particles moving with velocities of 10–100 m/s
- Direction of the dust trajectories can be explained by a combination of the ion drag, Coulomb forces, and ion pre-sheath drifts

"Statistics" being developed Thomson Scattering - 400/cubic meter, 80 nm average

Top view (DiMES TV)

Tangential divertor camera (LLNL)

Fast-framing midplane camera (UCSD)

Outline - Boundary Topical Science Area Presentation

- Review recommendations from 2005 PAC Meeting
- Review results from 2005 campaign (highlights)
 - LTOA upgrades motivate new experiments
- New capabilities provided by the LTOA
- ITPA and ITER physics research needs guide planning for experiments
- Summary of 2006-7 Experimental Planning
 - Working groups: PSI, Heat flux control, Transport, AT Divertor
 - Boundary presentation to Research Council
- Boundary Topical Science Area Response to Charge
 - Impurity transport with (primarily) carbon walls
 - Rich boundary diagnostic set for comparison with codes (e.g. UEDGE, BOUT)

ITER-relevant boundary studies with the new AT divertor

136-05/SLA/rs

New divertor measurements in the DN AT divertor

Diagnostic divertor area will have contoured tiles

Outline - Boundary Topical Science Area Presentation

- Review recommendations from 2005 PAC Meeting
- Review results from 2005 campaign (highlights)
 - LTOA upgrades motivate new experiments
- New capabilities provided by the LTOA
- ITPA and ITER physics research needs guide planning for experiments
- Summary of 2006-7 Experimental Planning
 - Working groups: PSI, Heat flux control, Transport, AT Divertor
 - Boundary presentation to Research Council
- Boundary Topical Science Area Response to Charge
 - Impurity transport with (primarily) carbon walls
 - Rich boundary diagnostic set for comparison with codes (e.g. UEDGE, BOUT)

ITER needs : Design Issues and ITPA tasks

Design issues that need ITPA input (Shimada, IT)

- a. Heat load on first wall, especially due to ELMs
- b. Carbon erosion/deposition/control of tritium inventory and material choice
- c. Private region PFC and necessity of Dome
- ITPA High Priority Research Tasks and ITPA/IEA Experiments 2005-6
 - d. Understand the effect of ELM/disruptions and first wall structures
 - e. Improve understanding of Tritium retention & the processes that determine it and development of efficient T removal methods
 - f. Develop improved prescription of SOL perpendicular coefficients and boundary conditions for input to BPX modeling
 - g. Determine life-time of plasma facing mirrors used in optical systems
 - h. Development of measurement requirements for dust

Boundary TSA working groups are organized around ITER physics issues

• Plasma Surface Interactions (Groth) b, e, f, g, h (ITER) 28

19

5

- Carbon transport ITER tritium inventory
- ITER mirror and tile gap tests
- Heat Flux Control and Fueling (Petrie) a,c, d,c
 - Heat load on first wall, AT divertors
 - Puff and pump in ITER Hybrid and AT plasmas
- Transport & ELMs (Boedo) d, f
 - Poloidal dependence of transport, ELM effects
- AT Divertor (Mahdavi) c
 - Commission new divertor in AT shape
 - Particle control in highly shaped AT DN plasma
 - Dome shape for ITER

(Assumes no ¹³C exposure in 2006)

Example of organized proposals - PSI area

ITER "protoyping" or operations studies

		ITER Mirror test. Exposures of diagnostic mirrors in the divertor and in the midplane
	735 Andrey Litnovsky	locations.
ITED Mirror a	724 Androw Lithowsky	Investigations of TER-like castellated structures in DTT-D: carbon migration and fuel
HEK WINDI - g	1027 Michael J Schaffer	Minimum Bake Temperature for Expeditious Tokamak Operation
•	758 Peter C Stangeby	Quantitative exidence of Expectitions 13C denosition
	750 reter e. Stangeby	Regular monitoring of the plasma conditioning of the new divertor tiles using a standard
13C ha	776 Peter C. Stangeby	discharge
чос - D,e		
		Chemistry and spectroscopy of sputtering
		Spectroscopic characterization of CH4, C2H4, and H2 in attached and detached divertor
	733 Adam McLean	plasmas
	983 Adam McLean	Simulation of wall chemical sputtering using methane putting into USN plasmas with the PPI
	087 Adam Malaan	Islasmas
Sputtering	745 Mathias Groth	Toroidal distribution of CD and C2 emission and chemical sputtering in DIII-D
-p3		Study of fragmentation chemistry using porous plug to inject hydrocarbons into divertor
	547 Neil H Brooks	strike pt.
b.d.		Deuterium injection for quantification of the recycling flux in the detached outer divertor of
	947 Sebastijan Brezinsek	DIII-
		Hydrocarbon injection for quantification of erosion yields in the detached outer divertor of
	946 Sebastijan Brezinsek	DIII-D
		Effect of wall temperature on sputtering and migration
Wall	1075 Adam Mel can	studies of impurity now and recycling in the SOL and divertor of plasmas with a not vesser
	1075 Adam McLean	Material exposure at DIMES and MIMES locations and at different temperatures, with FLMs
Temperature .	604 Clement Wong	free H-mode.
remperatore	1097 Dennis Whyte	Effect of divertor surface temperature on carbon chemical erosion
6 0	972 Dmitry Rudakov	Dependence of C deposition and D co-deposition rates on the surface temperature –
E,Y	636 Neil H Brooks	13C tracer injection into DIII-D plasmas, with the vessel wall hot
_		
		Erosion and Material migration w & w/o tracer isotopes
	920 Alexander Pigarov	Intrinsic dust migration and dust production rate evaluation. C13 tracer for dust
13 C h a	636 Neil H Brooks	I SC tracer injection into DIT-D plasmas, with the vessel wall not
'°С-b,e	758 Peter C. Stangeby	Quantitative oxidation of DTT-D following T3C deposition
·	655 William R. Wampler	
		Gaps
Tile Cane ha	682 Karl W. Krieger	Measurement of deuterium and carbon deposition in gaps of plasma facing structures
Ille Gaps-b,e	765 Peter C. Stangeby	Measurements of the effects of small wall gaps
• *	802 Sergei I Krasheninnikov	Plasma in shadow regions
	768 Soren Harrison	Neutral particle erosion/deposition measurements between tile gaps.
		Dust
	917 Alexander Pigarov	The role of dust in impurity/tritium migration
	919 Alexander Pigarov	Nanometer-size dust inventory measurements
Duct - h	920 Alexander Pigarov	Intrinsic dust migration and dust production rate evaluation. C13 tracer for dust
D031 - 11	921 Alexander Pigarov	Carbon-dust shield for deep gas puffing and disruption mitigation
	918 Alexander Pigarov	Observation of dust-blob and dust-ELM interactions
	973 Dmitry Rudakov	Migration of micron size carbon dust in tokamak divertor and SOL

Example: Run time request in PSI area

ITPA	Quantification of chemical sputtering in DIII-D	Α	В	С
	 Fragmentation of hydrocarbon molecules Characterization of D / D₂ recycling fluxes Helium plasmas 	2x 1/2	1/2	1
•	D and C deposition in tile gaps			
ITPA	 Heated vs. unheated DiMES tile gap sample, detached divertor conditions Heated vs. unheated ITER-like, castellated DiMES sample, detached divertor conditions 	2x 1/2	2x 1/2	
	 – QMB 	P-B	24 1/2	
•	Heated diagnostic mirror test			
	 Mirror at constant temperature 1/2 Differentially heated DiMES mirror 			1/2
•	Wall chemical sputtering			
ITPA	 CH₄ injection into USN Strong CH₄ injection into LSN 		1/2	1
•	Mainchamber erosion - new camera	1/2		
ITPA	Material erosion			
	 Multi-sample exposure Ar induced detached divertor plasma Temperature dependence of erosion 			1 1/2 1

Power and Particle Control Experiments Grouped

		VB	dRsep	Gases	Time
Impurity Enrichment in DN H-mode		U&D	0	Ar + D ₂	0.5 + 0.5
588 PetrieRadiative Divertor Compatible with DN H-mode plasmas?		U&D	0	Ar + D ₂	0.5 + 0.5
757 Leonard	Low n _e Radiative Divertor by pellet and impurity	D	+1	Ar + Pellet	1.0
ITPA _e	Divertor Plasma With and Without Dome	U&D	+1,-1	Ar + D ₂	0.5 + 0.5
592 Petrie	Optimal fueling in pumped DN: Inside vs. Outside	U&D	0	D ₂	0.5
594 Petrie Heat flux outside slot divertor be reduced?		U&D	-2	Ar + D ₂	0.5 + 0.5
643Stationary feedback controlled ArgonOngenaseeded H-mode radiative divertor		UorD	Any	Ar + D ₂	06- piggyback
701 Baylor Scaling of HFS pellet mass drift and comparison with theory				Pellet	1.0
921Carbon dust shield for deep gas puffing and disruption mitigation				Need duster	piggyback

Power and Particle Consolidated run time request

	Topic	2006	2007
ITER	Radiative Divertor	2	1
	Feedback	Piggyback	2.0
	HFS pellet	1(b)	
	Carbon dust shield	Need duster, piggyback	piggyback

Boundary TSA working groups are organized around physics issues

- PSI group (Groth) 3/2/4 WG request/12wk/32 wk
 - ITER tritium inventory and carbon transport
 - ITER mirror and tile gap tests
- Heat Flux Control and Fueling (Petrie) 2/1/4
 - Puff and pump in ITER Hybrid and AT plasmas
- Transport & ELMs (Boedo) 1/0/2
 - Poloidal dependence of transport, ELM effects
- AT Divertor (Mahdavi) 2/2/4
 - Commission new divertor in AT shape
 - Compare pumping with predictions
 - Dome shape for ITER

(Assumes no ¹³C exposure in 2006)

DIII-D in the context of world tokamaks contributing to ITER

These are "icons" - not to scale

ITER site decision provides focus for DIII-D Boundary Program

- a. Heat load on first wall, especially due to ELMs
- d. Understand the effect of ELM/disruptions and first wall structures

Continued work with new diagnostics - probes, main chamber camera Radiative divertor in Hybrid mode

- b. Carbon erosion/deposition/control of tritium inventory and material choice
- e. Improve understanding of Tritium retention, processes, and Tremoval
 ¹³C experiments, DiMES, and modeling (DIVIMP, UEDGE), side lab O₂ bake
- g. Determine life-time of plasma facing mirrors used in optical systems
- h. Development of measurement requirements for dust

TS for dust, dust during commissioning)

- c. Private region PFC and necessity of Dome

New divertor geometry with and without dome, SN, DN - effect of drifts

- f. Develop SOL perpendicular coefficients and B.C. for input to BPX modeling *Comprehensive diagnostic set compared with computational models: UEDGE, BOUT, DIVIMP, DEGAS-2, BOUT-Kinetic -- with particle drifts*

