Confinement and Transport Topical Area

by K.H. Burrell

Presented to DIII-D Program Advisory Committee

January 31– February 2, 2006

Long-term Goals for Confinement and Transport Topical Science Area

- Over-arching goal for the confinement and transport topical science area is to develop a predictive understanding of transport
- Investigate the fundamental transport physics issues that are raised by DIII–D advanced tokamak research
- Foster investigations of novel transport ideas and develop new discoveries

Confinement and Transport Summary

- In the DIII-D five year plan, Confinement and Transport is one of the three main foci for DIII-D research
- Confinement and Transport plan for 2006–2007 relies heavily on the new tools developed during the last few years
 - Balanced beam injection
 - New fluctuation diagnostics
 - Upgraded computer cluster for GYRO runs
- ITER-relevant experiments from ITPA list are an important part of the plan
- In the longer term, research leading to a predictive understanding of transport will allow the US to contribute significantly to ITER and to benefit from ITER

- DIII-D is playing a major role in this research

Transport is Driven by Several Turbulence Modes with a Range of Spatial Scales

- Ion thermal transport is affected primarily by the longer spatial scale ITG modes
 - Frontier here is effect of zonal flows
 - New results on zonal flows and core barriers forming at integer q_{min}
- Present models suggest angular momentum transport is also dominated by longer scale modes
 - Role of torque due to radial current leads to speculation that short scale, electron processes might also be important
- Electron thermal and particle transport can be affected by turbulence modes at all spatial scales

Transport is Driven by Several Turbulence Modes with a Range of Spatial Scales

- We have the best understanding of the ITG modes; according, the frontier for turbulence research is the shorter wavelength ETG and TEM
- There are several general turbulence stabilization mechanisms
 - ExB shear affects primarily the longer wavelength modes
 - Shape effects (ŝ, α) can affect turbulence over a broad range of spatial scales
- This year, we finally have the tools to separately control E×B shear and shape effects

Indicative turbulence scales	0.1	$k_{\theta} \rho_{s}$	1.	10	
	0.4	k _θ (cm⁻¹)	4	40	
Turbulence mechanisms	ľ	TG TEM		ETG	
Affected transport channels	Ion ti Mom Elect	hermal entum ron particle Ele	ctron thermal		
Stabilization mechanisms		E×B shear Negative magnetic shear α-stabilization (Shafranov shift) Impurity dilution			

Transport is Driven by Several Turbulence Modes with a Range of Spatial Scales

- Although we have a reasonable understanding of E×B shear stabilization, to apply this understanding in future devices we need a better understanding of plasma rotation
 - A special issue here is rotation in plasmas with little or no external torque
- E×B shear stabilization is also the key to the L to H transition
 - We need to determine what triggers the change in E×B shear before we have a predictive understanding of the transition

Hardware and Software Upgrades Provide New Transport Tools On DIII–D

- Simultaneous co plus counter neutral beam injection at powers up to 10 MW
 - Separate control on heat and torque input
 - Enables improved MSE and CER measurements
- Improved turbulence diagnostics
 - Turbulent density field (0.1 $\leq k_{\rm L} \rho_{\rm S} \leq 10$)
 - Turbulent velocity field (0.1 $\leq k_1 \rho_s \leq 0.3$)
- New high availability computer cluster
 - Gives greatly improved throughput with GYRO
- Additional ECH power and pulse length (6 long pulse gyrotrons)
 - Improved modulated transport studies
- Divertor upgrade
 - Density control in high triangularity discharges ($\delta \leq 1$)

CO Plus Counter NBI on DIII–D

- Changed direction of 210° beamline so it became mirror image of 150° beamline
- Five ion sources injecting in co-direction, two ion sources counter for standard I_p direction
- Balanced injection possible up to 10 MW input power

Broad Wavenumber Diagnostic Set Being Developed at DIII–D

- Wavenumber region potentially occupied by ITG, TEM and ETG type instabilities
- Large k-space probed by fluctuation diagnostics on DII–D
 - U. Wisc. beam emission spectroscopy (BES), upgraded for improved sensitivity, probes 0 - 3.5 cm⁻¹
 - UCLA FIR scattering system upgraded to probe low (0-2 cm⁻¹) and intermediate wavenumbers (6-15 cm⁻¹)
 - New concept high-k backscattering system added (~40 cm⁻¹) (UCLA)
 - MIT phase contrast imaging (PCI) upgraded to probe core plasma, 0-30 cm⁻¹
 - Fluctuation and correlation reflectometry probe 0-5 cm⁻¹

Existence of High-k Turbulence Demonstrated in DIII-D

• Existence of high k density fluctuations (k ~ 35 cm⁻¹, k_{\perp} ρ_i ~ 2-10) demonstrated through direct measurements

- Broadband turbulent activity out to \sim 400 kHz, increases due to NBI (changes in T_e, T_i, ∇ T_e, ∇ T_i)
- Coexists with lower k, higher fluctuation level turbulence

DIII–D BES Capabilities: High-Sensitivity, 2D Density Fluctuations

Broad Feature at Low Frequency in Poloidal Turbulence Flow is Suggestive of Zonal Flow

Confinement and Transport Focus Areas for 2006–2007

• Primary foci

- Angular momentum transport
 - ★ Develop control of rotation with co plus counter NBI
- Transport barrier physics and control (core and edge)
 - ★ Exploit direct control of E×B shear
- Electron thermal transport (high k turbulence)
- Turbulence characterization (zonal flows)

Secondary foci

- Ion thermal transport
- Particle transport

Developing Predictive Understanding Requires Theory-Experiment Comparison

- Theory-experiment comparison is the sine qua non of developing predictive understanding
- Within the national DIII–D team, this is promoted by
 - Including theorists, modelers and experimentalists in Confinement and Transport group meetings
 - Series of seminars in 2005 on new diagnostics and new simulation and modelling capabilities
 - Remote participation routinely available for those off-site
- Nationally and internationally, members of the DIII–D team are deeply involved in the US/EU Transport Task Force and in the ITPA activities
 TTE has a major emphasis on code validation
 - TTF has a major emphasis on code validation

Integrated Modeling Meetings on Transport During 2005

08/03/2005	МсКее	BES Capabilities
08/17/2005	Burrell	CER System Capabilities
08/24/2005	Waltz/Candy	GYRO Turbulence Predictions
08/31/2005	Holland	BES Analysis Techniques
09/07/2005	Rhodes	High k Turbulence Measurements
09/14/2005	Staebler/Kinsey	Latest GLF23 Capabilities
09/21/2005	Rost	PCI Capabilities
11/09/2005	Hinton	Zonal Flows and GAMs

DIII–D Experiment Investigated ITB Triggering at Low-order Rational q_{min}

- Typical L-mode NCS discharge with step-wise changes in transport near integer q_{min}
- Sustained core barrier formation when q_{min} is near integer requires correct input power
 - Too little input power (e.g. 2.5 MW) produces only transient T_e and T_i excursions when q_{min} passes through integer values
 - Too much input power
 (e.g. 10 MW)allows core barrier
 formation at a time when q_{min}
 is well away from integer value

M. Austin APS 2005

Alfvén Cascade Marks Exact Time When q_{min} Reaches 2

 FIR scattering measurements used to greatly improve accuracy of q_{min} timing

 Alfvén mode coupled with density fluctuation diagnostic provides important suplement to MSE diagnostic

Transport Improvement Precedes Appearance of Rational Surface

- Lower NB power (2.5 MW) produces transient confinement improvement
- Temperature rise starts 10–12 ms before q_{min}=2
- T_i, T_e rise continues for a similar interval afterwards

T_e Gradient Steepens Before and After q_{min} = 2, Dips at q_{min} = 2

- T_e gradients derived from adjacent ECE channels
- Changes shown are near and just inside radius of q_{min}, ρ ~ 0.45
- Further evidence of transport changes preceding q_{min} = 2

GYRO Runs Show Corrugations in $\nabla T_e/T_e$ at Low Order Rational q Values Near a q_{min}

 Profiles produced in GYRO simulations have large profile corrugations tied to low order rational surfaces

 These corrugations correspond to the various components of the time and flux surfaces averaged n=0 zonal flows on top of to the given smooth equilibrium

Gyro Corrugations in Radius Should Track the Experimental Time Traces

GYRO Results Show Profile Corrugations Are Locked to Integer q Surface

- Density of rational magnetic surfaces influences computed T_e gradients
- Increased ∇T_e starts when q_{min} is slightly above 2

Zonal flow Produces Substantial Modification in E_r profile

- Equilibrium E_r profile (blue) is modified by time-averaged zonal flow
 - Black curves are snapshots every $\Delta t = 50 a/c_s$
- Increased E×B shear may be trigger for core ion transport barrier

Core Barrier Formation Involves Magnetic Field Structure, Zonal Flows and E×B shear from Slowly Evolving Radial Profiles

- As q_{min} approaches integer value, zonal flow structure grows up to significant amplitude because of low density of rational magnetic surfaces
- Because of low magnetic shear near q_{min} in NCS discharges, this zonal flow structure has significant radial extent
- Oscillating E×B shear associated with zonal flows produces changes in local turbulent transport
 - Increase in a/L_{T_e} away from q = 2 location
 - Decrease in $a/L_{T_{e}}$ at q = 2 location
- As q_{min} continues to drop, these zonal-flow-induced changes are transient unless equilibrium E×B shear associated with background profiles is large enough
- Sustained core barrier is triggered by zonal flow if equilibrium E×B shear is close to that needed to stabilize turbulence
 - Requires sufficient input power and torque
- Key synthesis here is the realization that zonal flows are sensitive to magnetic field structure near low order rational q surfaces
 - Provides a connection between magnetic structure and transport

2006–2007 Research Plan in Confinement and Transport Topical Science Area

Working Group	Leader	Experiments
Shear and Rotation Control	K. Burrell	5
Fundamental Turbulence Studies	T. Rhodes	4
Core Transport Physics	J. DeBoo	5
H-mode Physics	G. Wang	2
	Total	15

• Chosen from 93 proposed experiments (83 distinct proposals)

Scientific Topics and Questions Considered in Experiments in 2006–2007: Shear and Rotation Control

- Develop control of rotation using co plus counter NBI
 - How does rotation change with varying momentum input at constant input power?
- Test Waltz's GYRO-based model of core transport barrier triggering at integer q_{min}
 - Does zonal flow trigger sustained core barrier only when equilibrium ExB shear is big enough?
- Separate rotational shear and ρ_{*} scaling effects on transport ITPA TP-6.2 and CDB-8
- Investigate rotation in torque-free plasmas

 ITPA TP-6.1
- Separate roles of E×B shear and Shafranov shift in ITB formation

Scientific Topics and Questions Considered in Fundamental Turbulence Experiments in 2006–2007

- Can we experimentally separate the effects of ITG and TEM?
 - Frequency shift discrimination in plasmas with controlled, small toroidal rotation
 - Use ECH modulation to turn TEM on and off
 - ITPA TP-7
- Do predictions of E×B shear stabilization theory agree quantitatively with BES measurements turbulence growth rates, decorrelation rates and shearing rates?
 - Compare GYRO results with Mach number scan with all other parameters held fixed
- Does the magnetic shear dependence of low, intermediate and high k turbulence agree with theory?
- How does the damping of zonal flows measured with BES compare with the various theoretical predictions?

Scientific Topics and Questions Considered in Experiments In 2006–2007: Core Transport Physics

- ITPA CDB-8
- How does particle transport vary with T_e/T_i ratio?
 - Test Angioni's GS-2 based prediction that ITG and TEM give different particle pinch
 - ITPA CDB-9
- Investigate modulated ion thermal and angular momentum transport using ECH-induced modulations
 - Investigate cross-couplings between transport channels
- How does local transport depend on flux surface elongation?
 - Test various elongation dependences predicted by different transport models

Scientific Topics and Questions Considered in Experiments in 2006–2007: H–Mode Physics

- Utilize detailed edge BES measurements across the L to H transition to determine whether zonal flows trigger the transition
 - Manipulate edge rotation with co plus counter beams
- Investigate effects of I-coil induced resonant edge magnetic perturbations on the L to H transition
 - Does lack of screening of RMPs in low rotation L-mode affect power threshold?

Fusion Physics and Long-Term ITER Needs Drive Transport Research to Same Goal

- Transport reseach will allow the US to contribute significantly to and to benefit from ITER
- Developing proposals for experiments on ITER will require extensive integrated modelling
 - Discharge development will have to be done on the computer, not on the tokamak
 - Novel operating scenarios will have to be demonstrated computationally before they are run on ITER
- Validated predictive transport models will be an essential part of the integrated modeling codes
 - US can contribute substantially to ITER by developing these models
- One of the major ways the US can benefit from ITER is to come out of the project with a full suite of modelling codes suitable for fusion reactor design
 - Transport models validated under burning plasma conditions are a key part of this

What Can the U.S. Do to Address Burning Plasma Related Transport Issues?

- U.S. is the world leader in all areas of transport research:
 - Most flexible, best diagnosed facilities
 - Superior theory, modeling and simulation capabilities
 - Unmatched turbulence diagnostics
 - Opportunity for U.S. to lead ITER research in this area, but this requires focus and commitment
- Transport provides a good mix of short and long term research possibilities
 - Theory/simulation, modeling, turbulence and transport measurements

While ITER Extends Operational Space, It is Not an Ideal Vehicle for Transport Studies

- Answering BP transport questions prior to and during ITER operation will require solid base program with viable experiments
 - Virtual non-existence of fluctuation diagnostics on ITER
 - Next step questions not addressable due to ITER's design realities
- U.S. will need ancillary facilities to ITER for transport studies and to serve as test beds of ideas
- DIII–D team intends to play a major role in the U.S. effort to develop the predictive transport understanding required for ITER

Confinement and Transport Summary

- In the DIII-D five year plan, Confinement and Transport is one of the three main foci for DIII-D research
- Confinement and Transport plan for 2006–2007 relies heavily on the new tools developed during the last few years
 - Balanced beam injection
 - New fluctuation diagnostics
 - Upgraded computer cluster for GYRO runs
- ITER-relevant experiments from ITPA list are an important part of the plan
- In the longer term, research leading to a predictive understanding of transport will allow the US to contribute significantly to ITER and to benefit from ITER

- DIII-D is playing a major role in this research

DIII–D Experiment on High k Turbulence and Test of Models

- Experimental goals: search for existence and behavior of high-k (ETG range) turbulence
 - Use new mm-wave backscatter systems (k~35 cm⁻¹)
 - 3 backscatter systems: 2 at 195° (systems A, B) and one at 240° (systems C)
 - System B has better spatial resolution, $\rm \sim\pm10~cm$
- Three experiments performed
 - Existence of high-k turbulence and validity tests
 - Test high-k turbulence models
 - Spatial distribution of high-k turbulence

ΔT_e Change Shows Definite Barrier Signature

- ∆T_e profiles referenced to 14 ms before q_{min} = 2 time
- Dipole change in T_e oberved about q_{min} radius

Localized Jump in Poloidal Velocity Occurs at q_{min}= 2 Trigger Event

- Observed radial variation of velocity represents very large shear
- BES measurement near Rqmin

