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Long-Term Goals For MHD Stability Research in DIII–D
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Establish the scientific basis 
for understanding, prediction, and control 

of MHD stability in toroidal plasmas

Contributions to basic
MHD science

Control and improvement 
of high performance 

DIII-D plasmas

Validation of stability
limits and instability control

for ITER
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Physics Goals 2006–2007 are Closely Aligned
with ITER’s Needs

Active control of instabilities
• Validate models for gas jet mitigation of disruptions   (MDC-1, ITER design)
• Demonstrate feedback control of resistive wall modes   (MDC-2, ITER design)
 at low plasma rotation
• Advance the understanding of edge pedestal stability   (ITER design issue)
 and the physics of ELM control
• Validate modified Rutherford equation for neoclassical   (MDC-8)
 tearing mode control with localized current drive

MHD stability physics
• Establish physics of neoclassical tearing mode threshold   (MDC-3)
 and seeding at low plasma rotation
• Benchmark models of fast ion interaction with Alfvén modes   (MDC-9, 10) 
• Advance the physics understanding of the sawtooth instability   (MDC-5)
 and means of controlling its severity
• Advance the understanding of plasma response to error fields   (MDC-6)

Develop model-based, multivariable plasma control
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New Actuators Enable Experiments in New Regimes

• Counter beam line
 – Rotation control for RWM physics, NTM control with modulated ECCD,
  error field physics
 – Variable fast ion distribution for Alfvén mode stability

• 5–6 gyrotrons
 – NTM stabilization
 – q-profile control

• High-throughput gas jet 
 – Unique capability for disruption mitigation physics

• High-bandwidth amplifiers for I-coils (6 amplifiers added in 2006)
 – RWM control
 – MHD spectroscopy
 – Possible NTM control
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NATIONAL FUSION FACILITY
DIII–D

New Diagnostics and Control Systems will 
Lead to New Physics Understanding

035-06/EJS/rs

• Soft x-ray/XUV array
 – MHD mode structure
 – Toroidal asymmetry of disruptions

• Fast ion profile from Dα spectroscopy 
 – Equilibrium pressure profile 
 – MHD-induced fast ion transport

• Plasma control system enhancements
 – 10 μs cycle time for RWM control
 – Modulation of gyrotrons in phase with NTM
 – Real-time CER analysis
 – Feedback control of plasma rotation
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DIII–D Experiments will Contribute to Validated Models
of Disruption Physics and Disruption Mitigation for ITER

• DIII-D pioneered the use of 
 high-pressure impurity gas injection 
 to mitigate effects of disruptions
 – Reduce localized heat flux
 – Reduce halo current forces
 – Suppress runaway electrons

• New high-flow gas valve in 2006
 – 10x throughput of previous valves
 – Will reach Rosenbluth density for
  runaway avalanche suppression
  in ~1 ms

• GA is hosting new ITPA disruption
 database
 – ITER urgent research item
 – Data from 4 tokamaks, so far

035-06/EJS/rs
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Physics of Impurity Penetration is a 
Key Remaining Issue

• Fast camera Ar I images confirm
 neutral gas penetrates only a few cm
 –  Similar observations at low 
  plasma pressure

• Neutral stopping may be due 
 to magnetic pressure
 –  Via J×B force at ionized 
  boundary

035-06/EJS/rs
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q-Scan Verifies Importance of Low-Order MHD
in Thermal Quench

• Time for thermal quench
 onset (cold front
 propagation time)
 increases with depth
 of q=2 surface

• Amplitude of IP spike
 decreases, consistent 
 with smaller (2/1)
 reconnection volume

• New diagnostics (second
 XUV array) will investigate
 n=1 asymmetry of 
 thermal quench

035-06/EJS/rs
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DIII–D Experiments Will Demonstrate Feedback 
Stabilization of Resistive Wall Mode

035-06/EJS/rs

• Recent experiments have shown RWM feedback control
  – At low rotation: transiently, with large n=1 error field 
  – At marginal rotation: sustained

• New capabilities will allow sustained feedback 
 stabilization with rotation below the critical value
  – Rotation control by near-balanced neutral beam injection
  – Additional high-speed amplifiers
  – Faster cycle time for digital control system

Research thrust on RWM control will be discussed  by A. Garofalo
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Control of Edge Stability is An Urgent Need for ITER

• Resonant magnetic perturbations have reduced or eliminated
 ELMs in recent DIII-D experiments
 – Enhanced transport may keep the edge pressure gradient 
  below the stability limit

• A major goal of future experiments is sufficient understanding 
 of the physics of ELM suppression to allow extrapolation to ITER

035-06/EJS/rs

Research thrust on ELM control will be discussed by M. Fenstermacher



NATIONAL FUSION FACILITY
DIII–D

Nonlinear Models Allow Study of ELM Physics

• Filament structure predicted
 by nonlinear BOUT 
 code simulation
 – Consistent with observations
  from fast magnetics and other
  diagnostics

035-06/EJS/rs
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Neoclassical Tearing Modes May Degrade
Fusion Performance of ITER Plasmas

• Recent experiments have demonstrated NTM stabilization up to the 
 ideal MHD no-wall limit

• Goal of upcoming experiments is to validate key features of 
 NTM stabilization by localized current drive:
 – Benefits of synchronous modulation of the current drive

 – Dependence on the width of the current drive layer

Research thrust on NTM control will be discussed by R. La Haye

035-06/EJS/rs



Experiment and Modeling will Investigate the Role 
of Rotation in NTM Stability

• NIMROD code models the seeding 
 of a 3/2 island by a sawtooth crash

– Model includes sheared rotation

• Counter NBI allows control 
 of rotation

– Lower β threshold with weaker 
 rotational shear?

–  Locking of 3/2 modes at low rotation?

–  Possibility of feedback stabilization with I-coils

035-06/EJS//rs
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New Diagnostics Provide Insight into Alfvén Instabilities

• Core fluctuation diagnostics show radial and poloidal  mode structure 
 – ECE, BES, FIR scattering, CO2 interferometers, …

• Fast-ion Dα measurements indicate strong reduction in the central 
 fast-ion density during strong Alfvén activity

• Future experiments will  use new diagnostics to document the
 eigenfunction and fast ion redistribution, and benchmark code predictions

035-06/EJS/rs
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Data and Modeling Suggest A Key Role for
Thermal Ion Drive
• BES data and NOVA modeling indicate short wavelengths for 
 core-localized Alfven modes

• NOVA-K model predicts short wavelength modes have a strong driving 
 term from the tail of the thermal ion distribution
  – Possible implications for ITER advanced scenarios with weak magnetic shear

• Future experiments will investigate drive, 
 damping, and fast ion transport
 – Attempt to separate beam ion and 
  thermal ion drive

035-06/EJS/rs
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DIII–D Has A Unique Opportunity to Study Giant Sawteeth

• Giant sawteeth with stabilization 
 by fast α's are a possible risk to 
 ITER's performance

–  Validated models for stabilization 
  and destabilization will improve 
  confidence in predictions for ITER

• DIII-D has a unique set of tools to 
 study physics of giant sawteeth

–  Fast-wave heating to 
  stabilize sawteeth

• Experiments will  benchmark models 
 for fast ion stabilization of sawteeth

–  Possible role of AE-driven fast ion 
  transport as sawtooth trigger

• ECCD near the q=1 surface is a 
 possible approach to reducing
 the sawtooth period

–  Demonstrated in L-mode discharges

–  Fast ion profile measurements

–  Core fluctuation diagnostics

–  ECCD for sawtooth control

035-06/EJS//rs
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Basic MHD Physics: Sawtooth Experiment Challenges
Our Understanding of Stability and Transport in the Core

• Strong shaping increases
 the central elongation
 and triangularity

• q-profile evolution during
 a sawtooth cycle is
 significantly different

– Internal kink versus
 interchange modes

• Central χe is significantly
 different (response to
 central ECH)

– Leads to different 
 q-profile evolution

035-06/EJS//rs
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Plasma Equilibrium Has a Significant 3-D
Response to Error Fields

• I-coil applies n=1 field rotating at 5 Hz, δBr ~10–3 Bt
 – ΔZ of plasma boundary (from Thomson scattering) responds 
  with ~2 cm amplitude

• 3-D equilibrium modeling will improve understanding of error field effects

035-06/EJS/rs
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Locked Mode Avoidance Does NOT Depend
Just on Resonant Mode Amplitude

035-06/EJS/rs

• Empirical C-algorithm performs
 best, even though all low
 rational B-components are large

• No correction at all is better
 than most of the theory-based
 corrections

• Evidence suggests non-resonant
 error fields may be important

• Empirical correction algorithm
 must be re-optimized after the
 recent modifications to DIII–D

 – Plasma also may be more
  vulnerable to error fields at 
  low rotation (balanced NBI)
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Model-based Multivariable Control is Ready to 
Implement and Test in Multiple Plasma Shapes

• Precise shape control is needed for double-null pumping

• The advanced shape control algorithm set has three basic features:

• Allows the system gain to be greatly reduced

• Accounts for nonlinear response at x-point

–  A pre-computed, model-based shaping coil current trajectory for each coil

• Coil current limits, e.g. 0 < F1A < 4500 Amps

• Constraint on net current of inner PF coil stack

–  Machine hardware limitations are directly incorporated to closely match
  the desired shape given those limitations

–  The controller takes into account every coil’s effect on each control point
  and x-point (Multiple Input, Multiple Output)

035-06/EJS//rs
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2005 Experiments Demonstrated Model-Based
Multivariable Control with RPF Current Regulation
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DIII–D Stability Experiments Address Critical Issues 
for ITER, Advanced Scenarios, and Basic MHD Physics

• Plasma control for reliable and precise operation
–  Measure error field and re-optimize correction
–  Develop feedback control of rotation
–  Incorporate multivariable control into routine experimental use

• Stability physics in 2006
–  Disruption mitigation:  impurity penetration, runaway avalanche suppression ✔
–  Benchmark models of fast-ion transport by Alfvén eigenmodes ✔
–  Effects of low rotation on NTM stability: seeding and locking ✔

• Experiments in 2007 and beyond
–  Validate physics of giant sawteeth and sawtooth control ✔ 
–  Sawtooth physics: transport and stability vs. magnetic curvature 
–  Reverse Shear Alfvén Eigenmodes: stability, thermal ion drive ✔
–  Validate prediction of 2nd regime access everywhere with qmin>2
–  Plasma response to error fields at low rotation ✔ 
–  Localized ECCD to modify sawtooth stability ✔ 
–  Disruption physics: energy loss and time scale, size scaling with JET ✔
–  NTM threshold: marginal βp for 2/1 mode with beta ramp down  ✔

035-06/EJS//rs
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✔ = ITPA experiments



The DIII–D Stability Program Addresses Key Issues for ITER
Scientific goals are closely related to the capability to predict and control 
MHD stability in a burning plasma

• RWM stability with rotation and feedback
– Stability limit of ITER advanced scenarios

• Physics of disruption mitigation
– Key issue for protection of ITER first wall

• Stability of Alfven eigenmodes and effect on fast ion transport
– Key issue for fusion gain in ITER

• Physics of NTM onset and stabilization
– Stability of ITER baseline scenario

• Physics of sawtooth instability and control of sawteeth
– Key issue for fusion gain in ITER

• Plasma response to error fields
– Stability of burning plasma in ITER with little or no torque

• Advanced plasma control
– Crucial to sustainment of ITER baseline and advanced scenarios

• Edge pedestal stability and ELM control
– Key issue for ITER first wall and divertor

035-06/EJS//rsNATIONAL FUSION FACILITY
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Summary

• The DIII–D stability program will use new diagnostic instruments, control
 actuators, and modeling tools to develop the scientific basis needed for

– Detailed extrapolation to ITER and future fusion devices
– Control and sustainment of high performance tokamak plasmas
– Understanding of fundamental MHD physics

• New tools for active control will be an essential element of the DIII–D 
 Advanced Tokamak program during the next five years, leading to

– Reliable operation of high performance plasmas
– New operating regimes beyond present stability limits
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