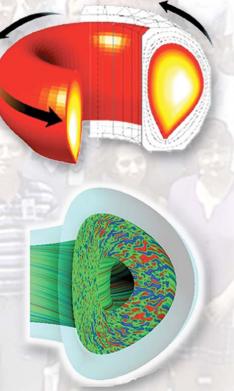
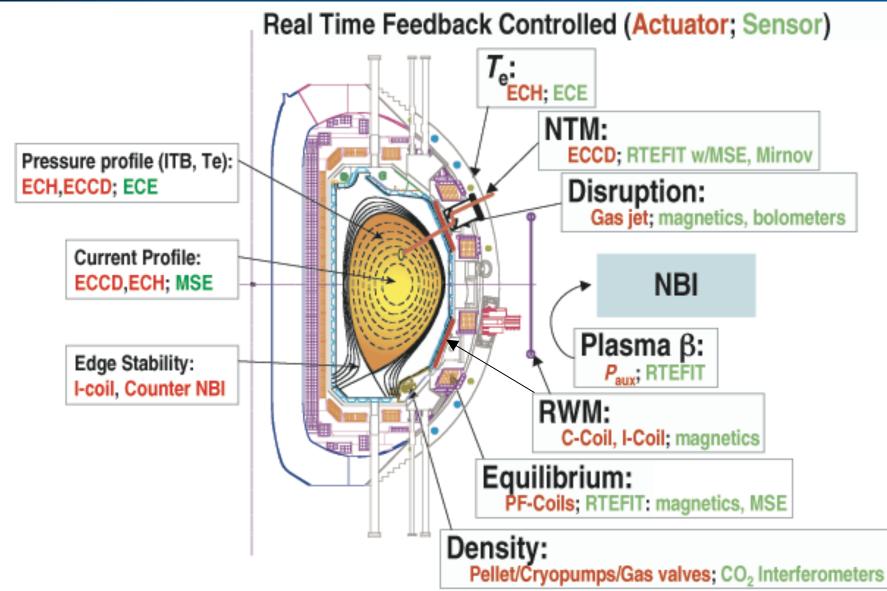
DIII-D Plasma Control

by D.A. Humphreys, J.R. Ferron, DIII-D PCS Team

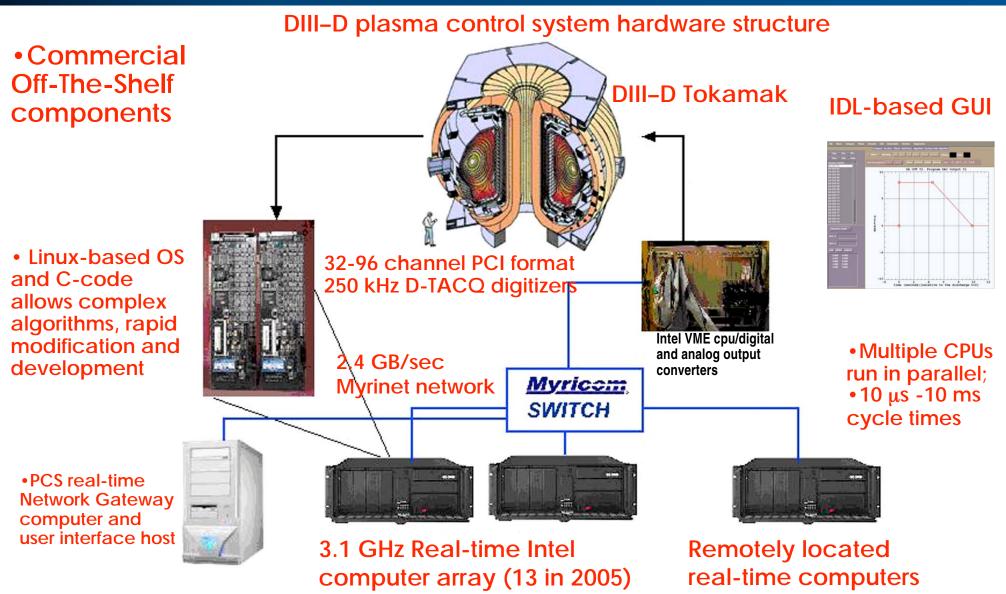

Presented to DIII-D Program Advisory Committee

January 31 - February 2, 2006

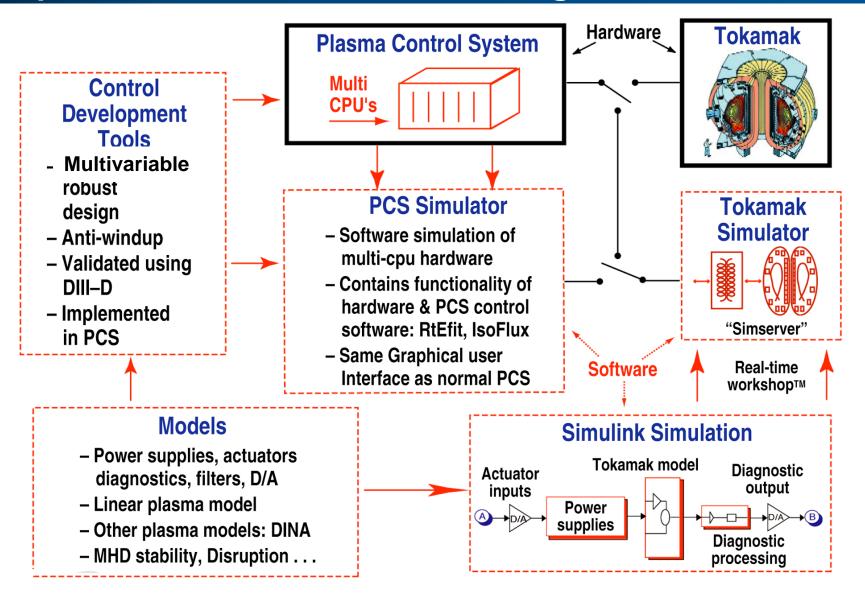


Outline

- DIII-D plasma control overview
- Control development for experiments in 2005
 - RWM actuators
 - NTM algorithms
 - q-profile control
- Advances in use of the DIII-D Plasma Control System and design tools worldwide: NSTX, PEGASUS, MAST, EAST, KSTAR
- DIII-D plasma control plans for 2006
- Plans for continuing DIII-D PCS use at other devices
- Support for ITER plasma control needs



DIII-D Advanced Tokamak Control Involves Many Actuators, Sensors, and Integrated Control Algorithms



DIII-D PCS is a Flexible, Scalable Multi-cpu Control System Supporting Arbitrarily Complex Algorithms

Integrated PCS/Simulation Environment is a Complete Plasma Control Package

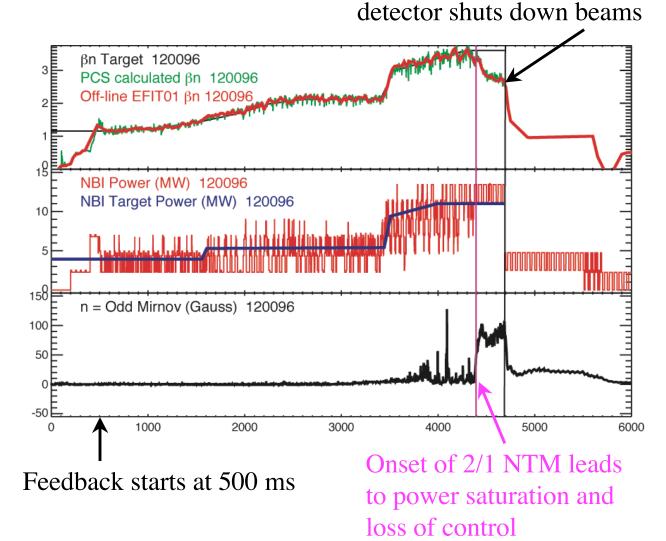
Outline of Accomplishments 2005 (I)

Software Upgrades

- Real-Time EFIT q-profile analysis improvements
 - rtEFIT with 32 ch. MSE, E_r correction, spline parameterization, 33 x 33 grid equilibrium producing q-profile every 4-8 ms
 - 3/2 and 2/1 q-surface reconstruction for NTM control
- Improved β_N feedback control algorithm
- Real-Time Thomson T_e and n_e profiles (32 channels)
- Real-Time CER algorithm "CERREAL" development begun with T_i and v_{tor} profile reconstruction (8 ch) demonstrated
- NTM suppression algorithm constrains a chosen
 q-surface (2/1, 3/2) to coincide with a fixed ECCD deposition
 location using rigid body radial shifts or B_T variation

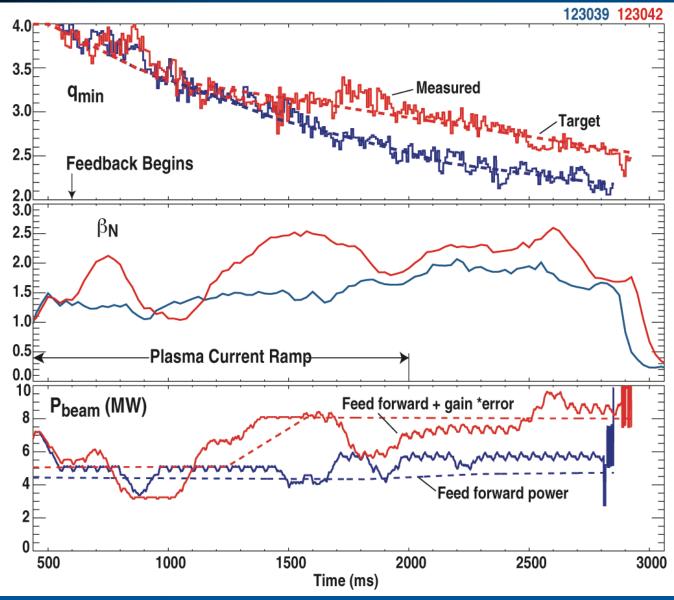
Outline of Accomplishments 2005 (II)

- RWM control algorithm improvements
 - Introduced Kalman Filter [Far-Tech]
 - Integrated audio amps into the RWM suppression algorithm
 - Simplified the user interface by utilizing I-coil patch panel data
- Development of feedback control of q-profile using NBI, ECCD/ECH [and FW] begun
- Advanced shape controller (model-based linear-nonlinear) demonstration

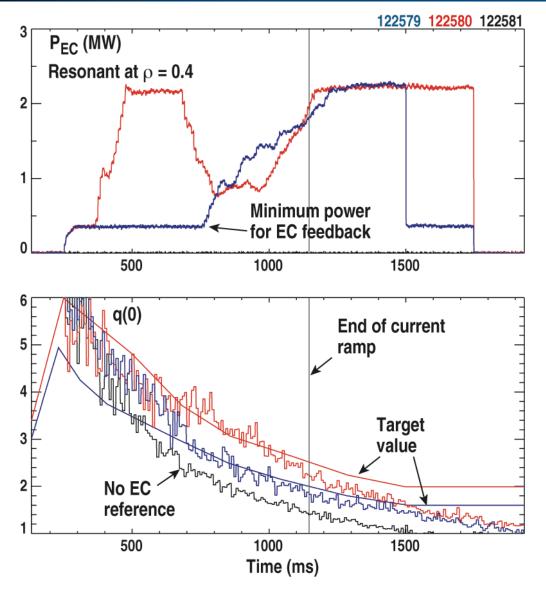

• Hardware Upgrades

- Total PCS processors increased from 9 to 13
 - More CPUs dedicated to Real-Time EFIT, with and without MSE
 - 3/2 and 2/1 q-surface reconstruction for NTM control.
 - Remote CPUs in Thomson (32 ch), MSE (32 ch) and ECE (32 ch) labs
 - Dedicated RWM control CPU and new ADCs reduce latency (to 35 us)
 - Control Room Real-Time displays increased from 4 to 7

β_N Feedback Control Has Been Improved


- Upgrades to real-time EFIT
- Improved PID gains
- Improved beam sequencing software
- Ability to handle beam faults gracefully
- Starting β_N feedback early in discharge helps improve shot-to-shot reproducibility

Asynchronous "dud"



q_{min} Has Been Controlled to High Values for Long Duration Using Neutral Beam Heating in H-mode

- Control works in rampup and flattop
- Proportional gain only
- Large power
 demand on NBI can
 drive plasma to β-limit
- Control of q_{min} and q(0)-q_{min} not possible with only NBI

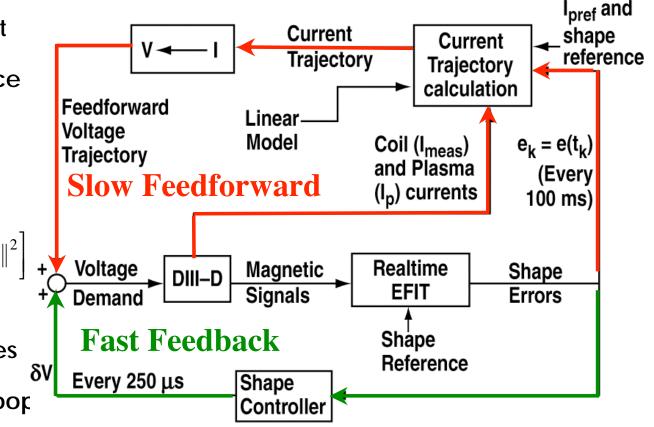
Closed-loop Control of q(0) Evolution Using Off-Axis ECH is Effective Until Power Saturates

• L-mode

 Control works during current ramp; insufficient EC power to maintain target in flattop

Proportional gain only

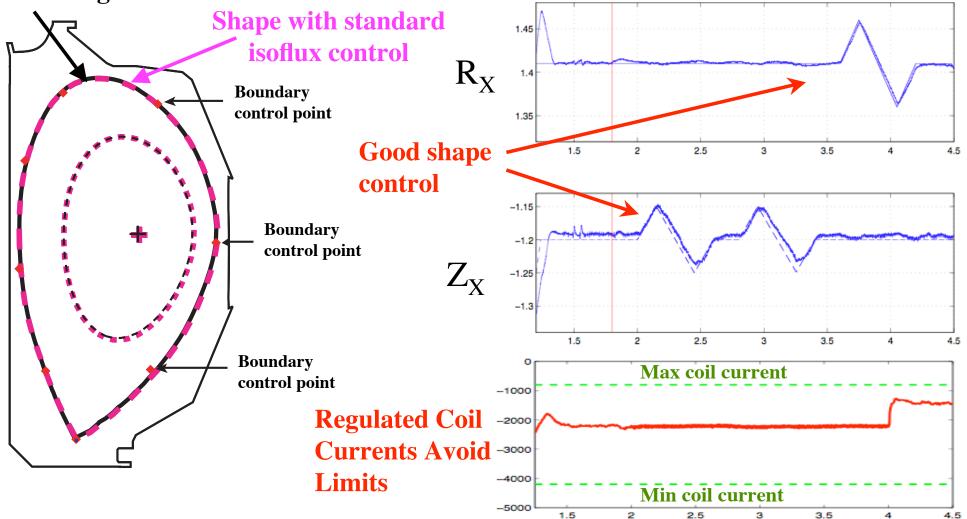
 Two different targets show good tracking of target in either good (red) or degraded (blue) breakdown conditions


New Integrated Shape + Coil Current Control Keeps Currents Away from Coil Limits

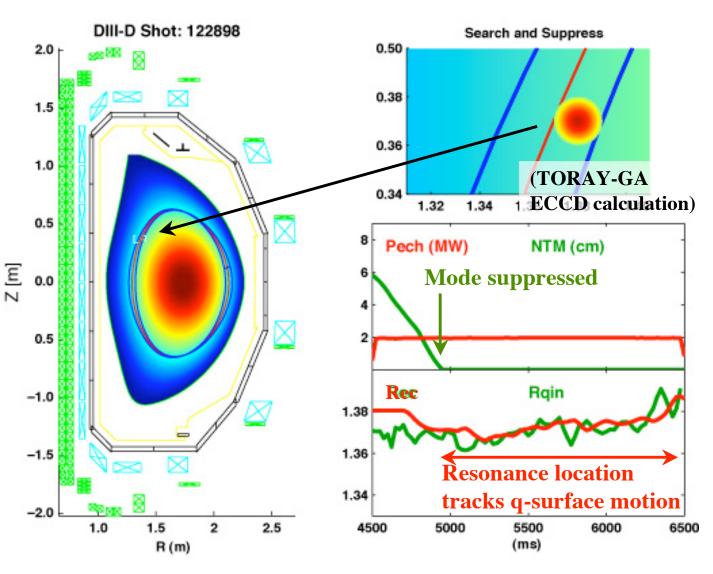
Coil current command trajectory

calculated from weighted cost functional to maximize distance from coil limits and maintain desired shape:

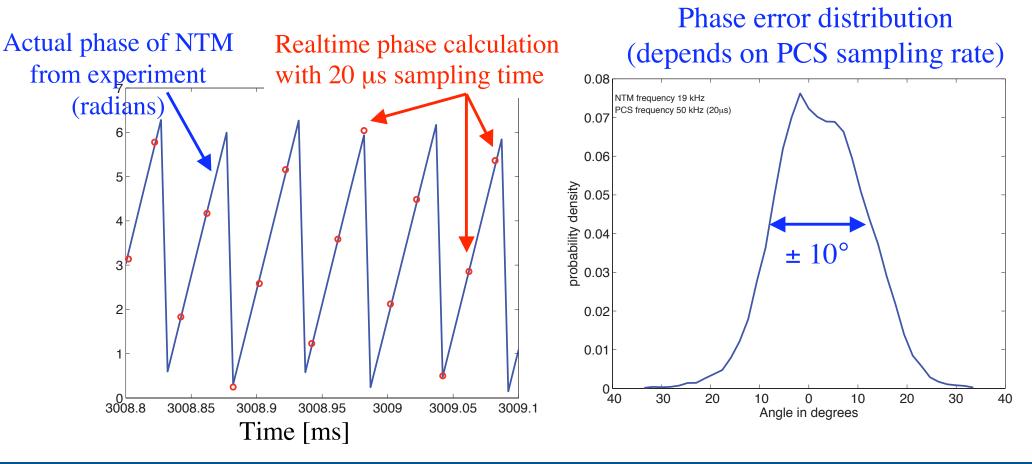
$$\min_{\Delta I_F} \left[\left\| W \left(e_k + G_{ep} \,\Delta I_p + G_{eF} \,\Delta I_F \right) \right\|^2 + \varepsilon \left\| \Delta I_F \right\|^2 \right]$$


 Slow Feedforward loop updates δ
every 100 ms, fast feedback loop
updates every 250 μs

2005 Experiments Demonstrated Model-Based Multivariable Control with PF Current Regulation


Shape with Feedforward PF current regulation same as

Active Tracking Maintains ECCD/q-surface Alignment Following Suppression of NTM


- After island suppressed, evolution in equilibrium detunes alignment
- "Active Tracking" maintains alignment as profile evolves
 - Realtime q-profile from rtEFIT + MSE
 - Assumes no change in
 ECCD location (not true when density varies and refraction is large)
- Compensator for density/refraction changes implemented in PCS in 2005

Algorithm for Realtime NTM Phase Determination Has Been Developed and Tested Offline

 Rotating NTM island frequency/phase must be determined in realtime for modulated ECCD to be applied at O-point, not X-point by PCS

Plasma Control Plans for 2006-07 (I)

- New integrated plasma rotation/ β_N control [LTOA counter-beam]
 - Realtime CER
 - Model-based controllers

Improved RWM control

- 6 new audio amplifiers (for total of 12) [LTOA]
- Improved model-based control algorithms
- Operational use of Kalman filters
- Integrated use of rotation control for low rotation targets
- Faster PCS (~10 μs cycle time)

Improved NTM control

- Gyrotron modulation control
- Realtime spectrum analysis for frequency/phase of modes
- Realtime mirror steering (multiple modes)
- New long-pulse gyrotrons [LTOA]

Plasma Control Plans for 2006-07 (II)

- Realtime EFIT
 - 65x65 grid
 - Include MSE channels viewing counter-beam [LTOA]
- Improved q-profile controller with ECCD/ECH, FWCD
 - Model-based control design
 - Target q-profile control for advanced scenarios
 - Collaborations with Lehigh Univ., CRONOS Team (EU), SWIPP (China)
- Model-based multivariable shape controllers in operational use
 - High-performance control for advanced scenarios
 - New divertor configuration control [LTOA]
- Upgraded impurity injection gas valve for disruption mitigation [LTOA]
 - 10x previous throughput; exceed runaway e suppression density

Use of DIII-D PCS at US and International Tokamaks Will Expand in 2006-07

- EAST/DIII-D PCS will control first plasma operations ~June 2006
 - EAST PCS installed at ASIPP September 2005
 - PF coil excitation tests to be controlled by EAST PCS ~ March 2006
- KSTAR/DIII-D PCS development will produce 3 evolutionary steps

 v2.0 = version with basic Day One capability (but e.g. no RTEFIT; installation on-site at NFRC February 2006)

 v2.5 = version consistent with KSTAR network/hardware solution (to be developed at GA in collaboration with visiting NFRC personnel ~ August 2006)

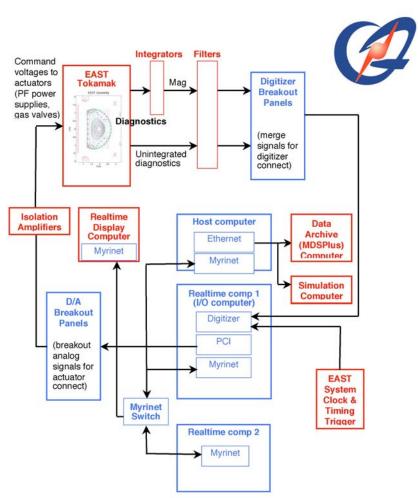
- v3.0 = version providing full Day One plasma operation capability

PEGASUS/DIII-D PCS will be installed and operational

- Modeling/simulation tools for optimal magnetics determination
- Magnetic predictor-based shape control

NSTX/DIII-D PCS will continue development at PPPL

- Realtime EFIT and isoflux control for high shaping
- Initial multivariable model-based axisymmetric controllers

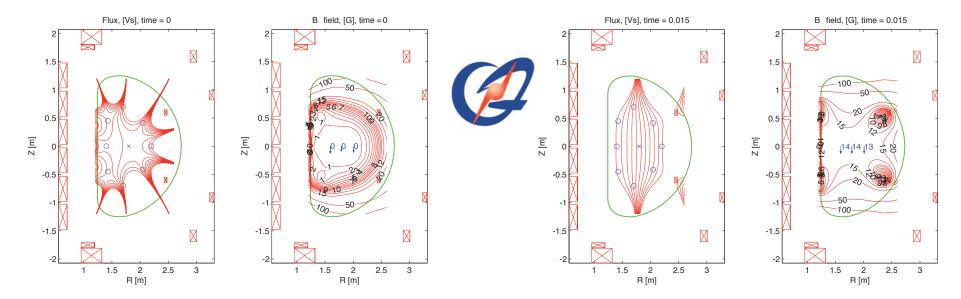


DIII-D PCS Now Common to KSTAR and EAST Provides Path for Critical Control Experience to Pass to ITER

EAST PCS installed/running at ASIPP (9/05)

- DIII-D PCS also operating on NSTX, MAST, PEGASUS (soon...)
- Common, generic PCS infrastructure software
- Machine-specific algorithms and hardware/network solutions
- Common, generic modeling/simulation tools

EAST PCS is a turnkey system based closely on DIII-D PCS ₁₅



Design Tools Enable Optimization of EAST Field During Breakdown and Initial Plasma Current Ramp

• Eigenmode least square optimization determines optimal voltage/PF current trajectories including eddy currents and limits on coil current and slew rates

 $[\mathbf{I}] = [\mathbf{E}][\mathbf{e}^{\gamma t}] [\mathbf{E}]^{-1} \left\{ [\mathbf{I}_0] - [\mathbf{R}]^{-1} [\mathbf{V}_0] + [\overline{\mathbf{L}}] [\dot{\mathbf{V}}_0] \right\} + [\mathbf{R}]^{-1} [\mathbf{V}_0] - [\overline{\mathbf{L}}] [\dot{\mathbf{V}}_0] + [\mathbf{R}]^{-1} [\dot{\mathbf{V}}_0] t$ where : $[\overline{\mathbf{L}}] = [\mathbf{R}]^{-1} [\mathbf{L}] [\mathbf{R}]^{-1}$; I = Current, L = Inductance, R = Resistance, V = Voltage, γ = Eigen values

Breakdown (0 ms) Low poloidal field ~ 0 Toroidal E-field ~ 0.3 V/m Ramp-up (15 ms), Ip ~ 12kA, Vertical field, B_z ~ 14G Stabilizing Field Curvature

DIII-D Plasma Control Program Will Continue to Make Key Contributions to ITER in 2006-07

- Development and demonstration of ITPA urgent controls
 - RWM feedback stabilization in low rotation targets
 - NTM stabilization with modulated, broad-deposition ECCD
 - ELM control with stochastic fields
 - Disruption mitigation with impurity gas injection
- Model-based controller design
 - Nonlinear axisymmetric control solutions for SC coils
 - Resistive wall mode controllers, ELM discriminators
- Valuable control experience with EAST, KSTAR
 - Long pulse shaped plasmas, superconducting coils
- Simulations that connect to PCS for control verification

 Integrated control of shape, MHD instabilities; operations issues (e.g. disruption effects)

Summary and Conclusions

- Plasma control development for 2006-07 will provide all required resources to support DIII-D experimental plan:
 - Plasma rotation/ β_N control for transport, RWM studies
 - Realtime CER for rotation feedback
 - 10 μs cycle time capability for faster RWM algorithms
 - Gyrotron modulation, mode frequency/phase detection for NTM control

- Improved model-based controllers for q-profile regulation, RWM stabilization, shape control

- Development and use of DIII-D PCS at US and international tokamaks will expand in 2006-07, contribute to ITER:
 - First plasma operation in EAST will use EAST/DIII-D PCS
 - Initial use of PEGASUS/DIII-D PCS at Univ. of Wisconsin
 - KSTAR/DIII-D PCS installed at NFRC/KSTAR and in hardwareintegration phase at GA
 - Model-based controllers, control-level simulations for ITER

