MHD Stability of High β NSTX Plasmas

A.C. Sontag, S.A. Sabbagh, J.M. Bialek, E.D. Fredrickson, D.A. Gates, J.E. Menard, W. Zhu and the NSTX Research Team*

•Slowly growing MHD mode observed -drive appears to be neoclassical - mode decays when β_{n} drops

•Obeys modified Rutherford equation* -compare solution to measured field perturbation

20

f(kHz)

Mode Amplitude

Pressure Driven Internal Kink

•High fast ion pressure and large region with q~1 leads to calculated ideal 1/1 instability

•Observed 1/1 can cause: $-\beta$ saturation -rotation damping -plasma disruption

Simulation

AB ZYANILI

• β saturates or rises in highest β shots •1/1 can saturate or decay

•Flow shear stabilization consistent with observed results

RWM

-M3D simulations show possible saturation mechanism

•Work on these modes ongoing -Menard J.E., et al., Nucl. Fusion, 43 (2003) 330

R (m) •RWM stability being acitvely researched -roles of rotation, dissipation, toroidicity, etc need clarification -understanding needed for passive and active stabilization of RWM

RWM Stability Dependant On Toroidal Rotation and Dissipation

Internal Sensors and External Control Coil Installed in NSTX Allow for Mode Detection/Control

Sensor Hardware

• δB_{p} and δB_{r} arrays installed above and below midplane on passive plates -12 sensors in each array - toroidally symmetric -instrumented for n=1,2,3 mode detection -coil pair sums and differences recorded $-2 \times 180^{\circ}$ pairs, $4 \times 90^{\circ}$ pairs

•Frequency response with shielding adequate for slowly rotating/locked mode detection -rotation of RWM ~1/ τ_{wall} < 200 Hz (away from with-wall limit)

Possible Indications of RWM Observed in 2004 Run Campaign

•Most high β_N shots appear RWM stable -other instabilities also a factor -high rotation appears to be stabilizing

•Shot 112093 is possible RWM candidate

•Growth in n=1 before collapse -difficult to resolve from noise in internal detectors -n=1 starting to grow at ~0.47s?

-SXR data confirms toroidal asymmetry

•Vertical instability at ~0.49s -n=1 'bounce' observed on both internal and external sensors -pure n=0 mode should be removed by SVD mode detection -global n=1 triggering n=0 displacement?

112093 n=1 Locked Mode Signals

Internal Sensors Show Improvement Over External Array

15 -

•VALEN model of sensors predicts $\sim 4x$ greater signal than external array

 DCON used to determine mode structure -shot 108420 mode structure

•Internal sensors observe rotating n = 1 when rotation drops below ~ 10kHz -consistent with measured sensor frequency response

•Signal Strength Consistent with VALEN calculations

•Mode lock much more clear on internal array

•Noise on internal array due to imperfect compensation

Active Feedback Coil Currently Under Construction

•1st coil pair to be commissioned by July 6

•Will initially provide n=1 field for magnetic braking/ MHD spectroscopy

•Capable of stabilizing up to $C_{\beta} = 0.68$

 $C_{\beta} = \frac{\beta_N - \beta_{N_no-wall}}{\beta_{N_ideal-wall} - \beta_{N_no-wall}}$

 fast switching power amplifier (SPA) on order -control system response will limit feedback capabilities -slow (3-4 ms latency) TFTR coil supply to provide power on day 1

* Work supported by US Department of Energy Contracts DE-FG02-99ER54524 and DE-AC0276CH03073

Real b_normal - equal arc