

Supported by

Particle and power exhaust in NBI-heated plasmas in NSTX

College W&M **Colorado Sch** Mines Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** SNL Think Tank. Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington

U Wisconsin

V. A. Soukhanovskii^a, R. Maingi^b, C. J. Lasnier^a,
A. L. Roquemore^c, R. E. Bell^c, J. Boedo^d, E. Bush^b,
R. Kaita^c, H. W. Kugel^c, B. P. LeBlanc^c, J. Menard^c,
D. Mueller^c, S. F. Paul^c, R. Raman^e, S. Sabbagh^f

^a Lawrence Livermore National Laboratory, Livermore, CA, USA
 ^b Oak Ridge National Laboratory, Oak Ridge, TN, USA
 ^c Princeton Plasma Physics Laboratory, Princeton, NJ, USA
 ^d University of California at San Diego, La Jolla, CA, USA
 ^e University of Washington, Seattle, WA, USA
 ^f Columbia University, New York, NY, USA

Culham Sci Ctr U St. Andrews Chubu U Fukui U Hiroshima U Hvoao U Kyoto U Kyushu U Kvushu Tokai U **NIFS** Niigata U **U** Tokyo **JAERI** Hebrew U loffe Inst **RRC Kurchatov** Inst TRINITI **KBSI** KAIST ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP.** Garching ASCR, Czech Rep **U** Quebec

Abstract

Particle and power exhaust in high-performance NSTX plasmas*

<u>V. A. Soukhanovskii</u>¹, R. Maingi², H. W. Kugel³, R. Bell³, T. Biewer³, J. Boedo⁴, C. Bush²,
 D. Gates³, R. Kaita³, B. P. LeBlanc³, J. Menard³, S. F. Paul³, R. Raman⁵, A. L. Roquemore³
 ¹Lawrence Livermore National Laboratory, Livermore, CA, USA
 ²Oak Ridge National Laboratory, Oak Ridge, TN, USA
 ³Princeton Plasma Physics Laboratory, Princeton, NJ, USA
 ⁴University of California at San Diego, La Jolla, CA, USA
 ⁵University of Washington, Seattle, WA, USA

Recent NSTX progress toward long-pulse high-performance operation highlighted heat and particle exhaust trends and features both similar to conventional devices and apparently unique to the spherical torus due to its magnetic geometry. A variety of lower single null L-mode, ELMy and ELM-free H-mode plasmas with elongation ranging from 1.8 to 2.5, triangularity from 0.4 to 0.9, NBI power from 0.8 to 6 MW, $n_c(0) \simeq (2.5-8) \times 10^{19} \text{ m}^{-3}$, and B_c from 0.3 to 0.45 T has been used to analyze the scrape-off layer (SOL) and divertor properties. In these plasmas up to 70 % of the input power dissipated in the divertor as heat on the targets and 10 - 15 % as radiation from ionized carbon and neutral deuterium. Evidence of volume recombination from D_a, D_y divertor profiles and Stark-broadened high-n Balmer series transitions, observations of a molecular CD spectral band emission, and the measured inner target heat flux under 1 MW/m2 suggest that the inner target is detached at $P_{NBI} \ge 0.8$ MW, $\bar{n}_e \ge (2-3) \times 10^{19}$ m⁻³. The outer target, with the typical measured peak heat flux ranging from 2 to 6 MW/m², remains attached at \bar{n}_e up to $0.9 \times n_G$, the Greenwald density, and the D₂ gas feed rate up to 8×10^{21} particles/s Mid-plane separatrix temperature is in the range 10 - 50 eV, suggesting that the outer divertor operates in the sheath-limited and high-recycling regimes with a low parallel Te gradient. Dedicated experiments aimed at radiative divertor development using D2 and neon injections are planned. Recycling and neutral pressure trends with P_{in} and n_e point to the need of active or passive divertor pumping for density control. The continuous and non-disruptive density increase at $dN/dt < 2 \times 10^{21}$ s⁻¹ is observed in NBI-heated plasmas, with an estimated divertor source contribution up to 4×10^{23} ionizations/s, the main chamber source up to 2×10^{22} ionizations/s under the assumption of poloidal uniformity, and the outer SOL neutral compression ratio in the range 5 to 10. A recently commissioned supersonic gas injector may provide an interim solution with more efficient gas fueling and reduced gas-wall interaction. *Work supported by the U.S. Department of Energy under contracts No. W-7405-Eng-48, DE-AC02-76CH03073, DE-AC05-00OR22725.

This research is supported by the U.S. Department of Energy under contracts No. W-7405-Eng-48 at LLNL and DE-AC02-76CH03073 at PPPL.

Thesis

- Divertor heat load mitigation one of the key Boundary Physics issues in large aspect ratio tokamaks, more so in Spherical Tori (ST)
- Study divertor regimes at low aspect ratio in NSTX (A = 1.35, q_{out} < 10 MW/m²)
- NSTX divertor (open, no active pumping): inner leg is naturally detached at $P_{in} > 1$ MW, $n_e > 2-3 \times 10^{19}$ m⁻³, outer leg is never detached
- In a dedicated experiment D₂ injection from private flux region produced outer leg detachment in 4 MW NBI-heated H-mode
- Neon injections did not result in outer leg detachment

Outline

- NSTX background: parameters, heat / particle fluxes, divertor asymmetries
- Naturally occurring divertor regimes in NSTX
- Dedicated D₂ and neon injection experiments to develop and study dissipative divertor regime compatible with high performance H-mode plasmas
- Summary

Tokamak (safety factor q = 4)

NSTX reference data

NSTX fueling

• Gas injection: low field side (LFS, top + side), high field side (HFS, midplane + shoulder), private flux region. D_2 , He, injected at S = 20 - 120 Torr I /s.

• Neutral beam injection system: three beams, 80 - 100 keV, 6 MW, fueling rate: S < 4 Torr I / s

Supersonic gas injection: S = 60 Torr I / s
 NSTX wall conditioning

- Between shots He GDC
- He conditioning plasmas
- TMB and Plasma TMB NSTX pumping
- Turbomolecular pump (3400 I / s)
- NBI cryopump (50000 I / s)
- Conditioned walls
 PFC
- ATJ graphite tiles on divertor and passive plates
- ATJ and CFC tiles on center stack
- Thickness 1" and 2"

Aspect ratio A	1.27
Elongation κ	2.5
Triangularity δ	0.8
Major radius R ₀	0.85m
Plasma Current I _p	1.5MA
Toroidal Field B _{T0}	0.6T
Pulse Length	1s
Auxiliary heating:	
NBI (100kV)	7 MW
RF (30MHz)	6 MW
Central temperature	1 – 3 ke\

Many useful diagnostics to study SOL and divertor

- IRTV: two Indigo Alpha 160 x 128 pixel microbolometer cameras, 7-13 μm range, 30 ms frame rate
- D_{α} , D_{γ} , C III filtered cameras: four Dalsa 1 x 2048 pixel CCDs, filter FWHM 10-15 A, frame rate 0.2 - 1 ms
- **Neutral pressure gauges**: four microion gauges on top and at midplane, two Penning gauges in lower and upper divertor, time response 5-10 ms
- High-resolution spectrometer ("VIPS 2"): ARC Spectro-Pro 500i, three input fibers (channels), time response 15-30 ms, FWHM > 0.6 A
- **Bolometry**: midplane (AXUV radiometer array), divertor ASDEX-type four channel bolometer, time response 20 ms
- Langmuir probes: midplane fast probe, tile LPs - I_{sat} , T_e measurements
- Midplane **Multi-point Thomson** scattering with 2-4 points in SOL

Impact of ST geometry effects on SOL and divertor physics is studied in NSTX

- High SOL mirror ratio *M=IB_{min}I / IB_{max}I* affects connection length L_{II} , fraction of trapped particles f, etc
- Large flux expansion ratio $f = \frac{(B_{\theta} / B)_u}{(B_{\theta} / B)_t}$: Heat and particle in-out asymmetries

 - Parallel transport, divertor regimes
- Compact divertor divertor volume, PFC plasma-wetted area

Heat flux, recycling, impurity divertor profiles

In lower single null plasmas:

- Heat flux increases non-linearly with P_{in}
- $q_{in}/q_{out} = 2-3$
- Heat flux equilibration time τ_{eq} ~ 100 ms
- Recycling strong in divertor
- High neutral pressure (0.1-0.2 mTorr)
- Neutral compression ratio is 5-10

Divertor in-out asymmetries observed

- Heat flux asymmetry always $q_{out}/q_{in} > 1$, consistent with
 - SOL area factor: A_{out}= 3 x A_{in}
 - Magnetic flux expansion factor (mid/div): $f_{in} > f_{out}$
 - Large Shafranov shift
 - Core / edge in-out transport asymmetry
- D_{α} asymmetry (particle flux / recycling) through most of op. space
 - Density and power dependent
 - Not always correlated with volume recombination onset
 - Complex interplay of cold dense opaque detached 3D plasma and

Inner divertor detached in NBI-heated plasmas

High *n_e*, low *T_e* inferred from Balmer series lines measured in inner divertor

- FWHM increases with n, Voigt line profile shape
- Inglis-Teller limit for n=14 yields $n_e=10^{21}$ m⁻³ (too high!)
- Stark broadening of 8-2 line yields n_e = 1-5 x 10²⁰ m⁻³
- Analysis with LLNL radiation transport code CRETIN in progress
- From line intensities (Saha-Boltzman population distribution): $T_e = 0.3-1.0 \text{ eV}$
- Inner SOL MARFE oscillating between midplane and divertor often observed

Outer divertor is in linear and high-recy. regime

- Outer divertor is always attached, heat flux typically 2-5 MW/m², max measured q =10 MW/m²
- Outer divertor is in sheath-limited and high-recycling regime
- Short connection length + L_c (carbon) = not detached at high n_e
- Uncertainty in LCFS position 1-2 cm:
 - MPTS midplane $T_e = 5 40 \text{ eV}$
 - Fast midplane probe $T_e = 10 30 \text{ eV}$
 - SOL collisionality $v^* = 5_{0.20} 60$
- Divertor $T_e = 5 40 \text{ eV}$
- Very weak dT_e/dx_{II} (e-i partition, heat transport mechanism)
- Carbon radiation
 "zone" is 10 eV

Flat *T_e*, *n_e* in outer midplane SOL

Moderate κ , δ plasma used for detachment studies

V. A. Soukhanovskii, 32nd EPS, June 2005, Tarragona, Spain

Detach outer divertor by injecting D₂

- Used PF2L shape, 4 MW NBI at $B_t = 0.45$ T
- Injected D₂ in LFS midplane at 20 120 Torr I / s
 PFR at 0 15 Torr I / s, HFS at 40-65 Torr I /s
- Concluded divertor detachment from $D_{\!\gamma}\!/D_{\alpha}$ ratio, peak heat flux reduction
- Sign of volume recombination (D_{γ}/D_{α}) in outer divertor at 100 Torr I / s, or with HFS+PFR injector at 65 Torr I / s
- D₂ puffing from midplane injectors brings outer outer SOL close to detachment threshold, however plasma hits operational limits (locked modes, large low m,n MHD modes, confinement degrdation)

Scan outer SOL collisionality by gas puffing

V. A. Soukhanovskii, 32nd EPS, June 2005, Tarragona, Spain 16 of 22

Outer divertor peak heat flux reduced x4 by D₂ injection in private flux region

- D₂ puffing from PFR reduces peak q_{out} four-fold
- No change in inner divertor peak $q_{in} = 0.5 \text{ MW/m}^2$
- Divertor radiation increases (difficult to quantify poor bolometric coverage
- Interim IRTV calibration used

Inner divertor $D\gamma / D\alpha$ increases x2 during D_2 injection from PFR

- D_2 puffing from PFR increases outer divertor D_{v} / D_{α} two-fold
- No change in detached inner divertor D_{γ} / $D_{\alpha} = 0.020 0.030$
- Interim D_{ν} , D_{α} camera calibration used

UEDGE detachment space is close to experiment

- H-mode LSN equilibrium used
- UEDGE diffusive transport model
- Impurities included
- Outer n_e , T_e profiles matched, D α and IRTV not matched
- For guiding purposes only

Detachment observations consistent with 2PM

$$2 n_t T_t = n_u T_u$$

$$T_u^{7/2} = T_t^{7/2} + \frac{7}{2} \frac{q_{\parallel} L_c}{\kappa_0}$$

$$q_{\parallel} = \gamma n_t T_t c_{St}$$

Neon injections did not detach outer divertor

- Neon puffed into 4 MW H-mode
- Did not cause H-L transition
- Puffing rate 1.5 x 10²⁰ s⁻¹
- P_{rad} = 0.3 x P_{in}
- Outer peak heat flux reduced x4

Summary

- D₂ and neon injections were used to attempt detachment of outer divertor leg in 3-4 MW NBI-heated L- and H-mode plasmas
- Clear signs of outer leg detachment were obtained in 4 MW H-mode plasmas with D₂ injections from the private flux region (PFR). Peak heat flux at the outer divertor target was reduced four-fold from 2 MW/m² to 0.5 MW/m². During D₂ injections from PFR spectroscopic diagnostics indicated the onset of volume recombination in the outer leg, where D_Y / D_α ratio increased two-fold and approached the value measured in the detached inner divertor
- Midplane gas injectors alone with D₂ fueling rate up to 110 Torr I / s failed to produce SOL conditions necessary for outer divertor leg detachment
- Up to four-fold reduction of the peak heat flux on the outer target was measured in 4 MW NBI-heated H-mode and L-mode plasmas with Ne injections. Outer divertor leg remained attached. P_{rad} / P_{in} was > 30 %

