

Observation of MHD-induced current redistribution in NSTX

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INFI Johns Hopkins U LANL IINI Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** SNL Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U** Marvland **U** Rochester **U** Washington **U** Wisconsin

Jonathan Menard

For the NSTX Research Team

33rd EPS Conference on Plasma Physics

June 20, 2006 Rome, Italy

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hvoao U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokvo **JAERI** Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep **U** Quebec

Outline

- Research discussed in this presentation is enabled by several improved diagnostic and control tools:
 - MSE diagnostic capability
 - Enhanced plasma shaping and control
 - -Active error field and RWM control
- Progress in combining high β , good confinement, and high non-inductive current fraction
- Phenomenology of NSTX long-pulse discharges
- Measurements and modeling of current profile evolution - Observation of anomalous current diffusion

NSTX plasmas approach the normalized performance levels needed for a Spherical Torus Component Test Facility (ST-CTF)

Peng et al, PPCF, 47 (2005) B263.

Lower $v_{*_{e}}$ in CTF \rightarrow higher f_{BS} for same β_{P}

High performance can be sustained for several current redistribution times at high non-inductive current fraction

• ∇p and NBI current drive provides up to 65% of the plasma current \rightarrow High $\beta_N \times H_{89P}$ sustained for many $\tau_{CR} \rightarrow$ record NSTX pulse-lengths (1.6s)

5

High beta phase of longest-pulse discharges is degraded by core MHD activity

- Strong shaping (κ =2.4, δ_L = 0.7, LSN) improves global and edge stability
- MSE diagnostic enables accurate stability limit calculations:
 - Plasma β_N above n=1 no-wall limit
 Rotational stabilization of n=1 RWM
 - Repeated excursions above n=1 ideal-wall limit trigger core MHD
- Confinement reduced by core MHD – Core MHD is n=1 continuous mode $\rightarrow \beta_N$ decreases 30% after mode onset

Current profile and density evolution of longest-pulse discharges are also modified by core MHD activity

TF coil current ramps down

MSE diagnostic enables testing of models of inductive and non-inductive current drive sources

- Compute V_{LOOP} distribution/evolution directly from MSE-constrained fits
 - Long pulse-length and quiescent discharges needed for analysis
- Fit *T, p, Z*_{eff} to ψ , compute σ_{NC} , J_{OH} & J_{BS} (Sauter model), add TRANSP J_{NBI}

Sauter collisional NC model consistent with experimental $I_{\rm P}$ and J_{\parallel}

 I_P =750kA, f_{NI} = 55-60%

Stand-alone $f_{BS} \approx 10\%$ higher than TRANSP – exploring NC models and mapping issues

Predicted $J_{\parallel}(\rho)$ and neutron rate inconsistent with measurement when continuous n=1 mode is present

Mode perturbed B-field sufficiently large to flatten rotation profile

- Mode clearly impacts angular momentum diffusion (NTV)
- Loss of sheared flow may degrade thermal confinement
- Large δB of mode likely impacts fast-ion confinement

Continuous n=1 mode identified as saturated infernal or quasi-interchange mode

DNSTX

- Soft X-ray + $q(\rho) \rightarrow \underline{not}$ an island
- •1-2cm displacement peaks at ρ = 0.4
- •q(ρ) weakly reversed
 - $\Delta q = q(0) q_{MIN} = 0.1-0.2$
 - $\rho(q_{MIN}) \approx 0.4$
- D_R > 0 for q_{MIN} < 1.4 → – Interchange drive
- → Saturated infernal or quasi-interchange mode
 - More unstable at higher β
 - More unstable as $q_{MIN} \rightarrow 1$
 - More unstable with deeper reversal

Mode-induced diffusion of fast ions can explain neutron rate and $J_{\parallel}(\rho)$ evolution in high-performance shots High core-localized anomalous Diffusion of fast ions can convert fast ion diffusion can account for centrally peaked J_{NBI} to flat or hollow profile neutron rate deficit Core δB from mode estimated to Redistribution of NBICD makes be 100's of Gauss \rightarrow large χ_{fast} predictions consistent with MSE $\langle J_{\parallel}B \rangle / \langle B_{\phi}R_{\circ}/R \rangle$ Profiles [MA/m²] Renormalized neutron rate (10¹⁴s⁻¹) 2.5 Averaging period = 1.2-1.35s χ_{fast} = 50m²/s, ρ < 0.30, t > 1.15s Calc Total 0.8 Reconstruction χ_{fast} = 20m²/s, ρ < 0.45, t > 1.15s 0.6 2.0 -50m²/s, ρ<0.3 χ_{fast}=0 0.4

Hypothesis for β and q_{MIN} regulation and mode persistence:

- Mode Triggering:
 - Rapidly growing n=1 instabilities encountered near ideal-wall limit redistribute current and/or fast ions → set up <u>weak reversed shear</u>
 - At low \textbf{q}_{MIN} and high $\beta_{\text{N}}\text{,}$ interchange-type modes are destabilized
- Mode Saturation:

- Potentially important for CTF which has up to 50% NBICD fraction
- Similar processes may be active in the "hybrid" scenarios proposed for ITER and observed on ASDEX-U (fishbones) and DIII-D (NTMs)

R(m)

Error field correction can sustain plasma rotation and increase pulse-length of high- β_N NSTX discharges

DNSTX

Summary

- Integrated high β , confinement enhancement, and non-inductive current fraction approaching CTF levels
- Operation near ideal-wall limit can trigger core MHD
- Persistent core mode identified as saturated "interchange"
- Core mode apparently induces anomalous NBICD diffusion
 Mode regulates β and q_{MIN} keeps q(0) > 1
 - Presently investigating possible J_{NBI} diffusion from *AE's
- New diagnostics and control tools are expanding NSTX operating space and physics understanding

 Essential for projecting to CTF and ITER

⇒ Please visit NSTX poster session Friday morning