

New Capabilities and Results for the National Spherical Torus Experiment

College W&M **Colorado Sch Mines Columbia Univ** Comp-X **General Atomics** INEL Johns Hopkins Univ LANL LLNL Lodestar MIT Nova Photonics **New York Univ Old Dominion Univ ORNL** PSI **Princeton Univ SNL** Think Tank. Inc UC Davis **UC** Irvine **UCLA** UCSD Univ Colorado Univ Maryland **Univ Rochester** Univ Washington **Univ Wisconsin**

M.G. Bell for the NSTX Research Team

33rd EPS Conference on Plasma Physics 19 - 23 June 2006, Rome *Poster P5.117*

Culham Sci Ctr Univ St. Andrews York Univ Chubu Univ Fukui Univ Hiroshima Univ Hyogo Univ Kyoto Univ Kyushu Univ Kyushu Tokai Univ NIFS Niigata Univ **Univ Tokyo** JAERI Hebrew Univ loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP.** Garching ASCR, Czech Rep Univ Quebec

NSTX Just Completed 12 Weeks of Experiments Exploiting New Capabilities and Regimes

- Good performance of TF coil joints: now ~4200 pulses since 2004 rebuild
 - Operated to 0.55T (designed for 0.6T)
 - 75% at 0.45T or higher
 - Joint resistances remained below expectations
- Optimized shaping with new PF coils for high triangularity and elongation
- Three pairs of magnetic field perturbation coils
 - Powered by fast Switching Power Amplifiers for Error-Field Correction and Resistive Wall Mode control
- Lithium Evaporator, Supersonic Gas Injector (see P-5.118)
- Extensive investigation of Coaxial Helicity Injection (see P-5.113)
 - Larger capacitor bank (45mF) and higher voltage (1.85kV)
- New and upgraded diagnostics
 - High-k scattering for electron-scale fluctuations

New Inboard Divertor Coils Increase Accessibility of High-Triangularity, High-Elongation Shapes

- Highest κ now obtained at highest $\delta \approx 0.8 \Rightarrow S \equiv q_{95} I_P / aB_T = 41 MA/m \cdot T$
- Small (Type V) ELM regime recovered at high κ > 2.5 with new coils
- Previously observed onset of large ELM-like events when $\kappa > 2.2$ *D. Gates , J. Menard* 3

Increased Triangularity Reduces Peak Heat Flux to Divertor Target

- Compare single-null & double-null configurations with triangularity $\delta \approx 0.4$ at X-point and high triangularity $\delta = 0.8$ double-null plasmas
 - Measure heat flux with IR thermography of carbon divertor tiles
- Peak heat flux decreases as 1:0.5:0.2
- ELM character changes: Type I \rightarrow Mixed \rightarrow Type V

4

Record Pulse-Lengths Achieved at High Current by Operating with Sustained H-mode

• H-mode with small ELMs \Rightarrow lower flux consumption, slow density rise

• High β_P increases bootstrap fraction \Rightarrow lower flux consumption

Long Duration Discharges Reach ~70% Non-Inductive Current During High-β Phase

- TRANSP model agrees with measured neutron rate during high-β phase
 - Model includes anomalous fast ion diffusion during later phase when low-m MHD activity is present
- 85% of non-inductive current is ∇p-driven
 - Bootstrap + Diamagnetic +
 Pfirsch-Schlüter

External Radial Field Coils Used to Counteract Error Fields and Improve Plasma Stability

- (NSTX ------
- External midplane control coils closely coupled to vacuum vessel
 - Similar to ITER port plug designs
- Investigated both pre-programmed corrections to error fields and feedback on mode amplitude
 - Signals from magnetic sensors processed in real-time
- Internal sensors detect n = 1 3
 Resistive Wall Modes (RWM)
 - Unstable n = 1 3 RWMs already observed in NSTX (Sabbagh *et al.*, NF **46** (2006) 635)

Correction of Intrinsic Error Fields Extends High-β_N NSTX Discharges

Non-resonant n = 3 Static Magnetic Braking Used to Suppress Intrinsic Rotation for RWM Studies

 Intrinsic rotation in NSTX typically fast and sufficient for passive stabilization of RWM

– Reached ω_{ϕ}/ω_{A} = 0.48 on axis

- Entire rotation profile important for RWM passive stabilization
 - not just single radial location
- With braking, rotation reduced well below RWM critical rotation profile
 - The $\omega_{\text{A}}/\Omega_{\text{crit}}$ = 0.2 at q = 2
 - The ω_A/Ω_{crit} = 0.3 on axis
 - Below rotation predicted for ITER Advanced Scenario 4

Observed Rotation Damping by Magnetic Braking Explained by Neoclassical Toroidal Viscosity

- Model based on details of applied damping fields
 - Spectrum of n's and m's required, not just primary mode
- Pressure-driven resonant field amplification (RFA) included in calculations
 - Increases non-axisymmetric field at high beta
 - Based on mode spectrum of applied field, or DCON computed mode spectrum
- Trapped particle effects are important at low aspect ratio (W. Zhu *et al.*, PRL 96, 225002 (2006))

RWM Stabilized by Feedback for ~ 90/y_{RWM} at **ITER-Relevant Rotation Rate**

• Rotation ω_{ϕ} reduced below critical rate by non-resonant n = 3braking starting at 0.45s

- Rotation falls to less than $\frac{1}{2}$ $\omega_{\phi}/\Omega_{crit}$ predicted for ITER (Liu *et al.*, NF **45** (2005) 1131)
- Feedback on n = 1 mode added to static n = 3 braking currents
- Discharge exceeds β_N^{no-wall} for both n = 1 & 2 modes
 - Time evolution of growth rate computed by DCON
 - n = 2 amplitude increases slightly but remains stable during feedback on n = 1 mode

S. Sabbagh, A. Sontag (Columbia), J. Menard, R. Bell 11

Positive/Negative Feedback Created by Varying Relative Phase of n = 1 Current Components

- RWM active feedback on n = 1
- Varied phase delay $\Delta \phi_f$ of control current relative to phase of detected n = 1 mode
- Pulse length increases when phase delay $\Delta \phi_f = 225^\circ$ creates negative feedback on mode amplitude
 - Damped system response to internal plasma mode seen at t = 0.78s
- Gain scan also performed
 - Sufficiently high gain created feedback loop instability

Lithium from Injected Pellets Deposited on Plasma-Facing Surfaces Provides Edge Pumping

- Fired lithium pellets (1.7 5 mg) from multi-barrel pneumatic injector into sequences of ohmically-heated helium discharges
 - Limited on center-stack tiles or lower-single-null divertor
 - After "pre-conditioning" surfaces with OH helium plasma
 - 1 or 2 pellets per discharge, 24 30 mg total lithium in each sequence
- Dramatic reduction in density in 1st subsequent NB-heated L-mode discharge

- Effect disappeared by 3rd similar discharge
 - Expected if most injected gas reacts with deposited lithium

H. Kugel 13

This Year, Lithium Evaporator Used to Coat Center-Column and Lower Divertor

Bell, M. / EPS'06 / 060623

H. Kugel, D. Mansfield, R. Kaita, R. Majeski, J. Timberlake, C. Skinner 14

Evaporated Lithium Coating Provides Similar Transient Reduction in Recycling

- NB-heated L-mode discharges with same gas puffing
- Intervening shots were ohmic helium plasmas
 - Used to prepare the PFCs for lithium
 - May account for up to 60% of observed density reduction

~400mg lithium
 evaporated in about 1 hr

- Reduction in density disappeared on second discharge, but
- There was a significant reduction in oxygen impurity radiation
 - this persisted over several days of operation

H. Kugel, B. LeBlanc 15

Lithium Coating Affects Core of H-mode Discharges with Small Change in Pedestal

0

0.5

1.0 1.5 Radius (m) *H. Kugel, R. Maingi, B. LeBlanc 16*

Motional Stark Effect Diagnostic Routinely **Measures Magnetic Field Line Pitch at 12 Points**

- Measures from outer edge past • magnetic axis
- Calibrated by NBI into neutral gas with known applied fields
- Analyze with EFIT, LRDFIT, ESC
 - Can include correction for E_r using CHERS v_{ϕ} profile

F. Levinton, H. Yu (Nova), S. Sabbagh (Columbia), J. Menard 17

1.2

9723@300ms

9725@265ms

MSE data

1.3

1.2

1.0

_RDFIT analysis

RMS error 0.4°

1.4

1.4

Robust Reversed-Shear Startup by Varying Ramp-Rate, NB Timing and Gas Injection

- q-profile very dependent on early MHD activity
 - Events lead to monotonic profile
- Also combined RS with H-mode edge but not yet optimized

Reversed-Shear Appears to Produce an Electron Transport Barrier

F. Levinton (Nova), R. Bell, B. LeBlanc, S. Kaye 19

Newly Installed High-k Scattering Diagnostic Probes Turbulence Related to Electron Transport

Status and Plans

- Extension of operating regime and pulse lengh at high κ and δ
- Error Field Correction and RWM Control coils for improving performance
- Particle control with lithium coating in both limiter and divertor plasmas
- Exploration of reversed-shear regime
- Now entering an outage planned to last until December 2006
 - Install "poloidal CHERS" diagnostic for v_{θ} profile
 - Upgrade lithium coating system to cover entire divertor and wall
 - In situ calibration of high-k fluctuation diagnostic
- Currently expect to operate for ~12 run weeks in 2007
- NSTX 2006 Research Forum for planning experiments in 2007 will take place towards the end of this year
 - Participation by our collaborators is encouraged!