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ITER

U.S. fusion program beginning an assessment of what concepts 
and initiatives are needed to extrapolate from ITER to Demo
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• A few critical issues to be resolved for Demo:
– Plasma-material interface - heat flux, T retention, etc.
– Steady-state high-performance operation
– Blankets/T breeding (Wn=1-2MW/m2 with fduty ≥ 30%)

• Component Test Facility (CTF) – low-A = 1.5
• Fusion Development Facility (FDF) – higher A = 3.5

This presentation will focus on a concept to 
develop integrated solutions to these 2 challenges
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Existing plasma-material interface concepts are marginal 
for ITER, and are unacceptable for CTF/FDF and Demo

• High-heat-flux challenge
– ITER divertor and first-wall marginal even without off-normal events

• No demonstrated heat flux solution (at high plasma performance) for CTF/FDF and Demo
– ELMs & disruptions can ablate/melt divertor, threaten first-wall & blankets in ITER

• Disruptions & ELMs unacceptable for CTF/FDF and Demo
• Tritium retention challenge 

– Carbon erosion and re-deposition up to 50:50 mix of C & DT in surface films 
• Erosion and neutron damage Carbon unacceptable for CTF/FDF or Demo

– Safety concerns limit ITER in-vessel mobilizable T inventory to < 350g
• < 1000mins of accumulated ITER ops before limit is reached with only 3% retention
• Potentially acceptable for ITER but need to develop new clean-up techniques
• Few % retention rate unacceptable for week/month long CTF/FDF or Demo operation

– Tungsten or flowing lithium might reduce T retention to acceptable levels, but…
• W can melt during ELMs & disruptions, sputtered mid-Z impurities, dust formation
• High liquid metal vapor pressure at high temperature could pollute plasma

• These challenges motivate new research device with following capabilities:
– Multiple divertor/PFC concepts, hot wall 1000°C, T operation, long pulse < 1000s
– High beta, high confinement, fully non-inductive operation
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Measured power scrape-off width independent of machine size 
P/R is useful divertor heat-flux metric for comparing devices

First wall heat-flux challenge P/S

Loarte, 1999
Fundamenski, 2004
(JET)
NSTX (35 Tl/sec)

Fig. 5. Measured power deposition width versus divertor power
for H-mode discharges without gas puff in the ITER power
deposition database. (Mapped from strike point to outer mid-plane.)

8.5mm midplane
power width

3.7 – 5mm ITER
projection



NHTX can address integrated fusion science mission at heat-flux 
level of CTF/FDF, and extrapolates to Demo reactor heat-flux

Device R a Pin Pin/R Pin/S Pulse Ip Species Comments
(m) (m) (MW) (MW/m) (MW/m^2) (sec) (MA)

Planned Long-Pulse Experiments
EAST 1.70 0.40 24 14 0.55 1000 1.0 H (D) Upgrade capability
JT-60SA 3.01 1.14 41 14 0.21 100 3.0 D JA-EU Collaboration
KSTAR 1.80 0.50 29 16 0.52 300 2.0 H (D) Upgrade Capability
LHD 3.90 0.60 10 3 0.11 10,000 – H Upgrade capability
SST-1 1.10 0.20 3 3 0.23 1000 0.2 H (D)
W7-X 5.50 0.53 10 2 0.09 1800 – H 30MW for 10sec
NHTX 1.00 0.55 50 50* 1.13 200-1000 3.5 D (DT) Initial heating
ITER 6.20 2.00 150 24 0.21 400-3000 15.0 DT Not for divertor testing

Component Test Facility Designs
CTF (A=1.5) 1.20 0.80 58 48 0.64 Weeks 12.3 DT 2 MW/m^2 neutron flux
FDF (A=3.5) 2.49 0.71 108 43 0.87 Weeks 7.0 DT 2 MW/m^2 neutron flux

Demonstration Power Plant Designs
ARIES-RS 5.52 1.38 514 93 1.23 Months 11.3 DT US Advanced Tokamak
ARIES-AT 5.20 1.30 387 74 0.85 Months 12.8 DT US Advanced Technology
ARIES-ST 3.20 2.00 624 195 0.99 Months 29.0 DT US Spherical Torus
ARIES-CS 7.75 1.70 471 61 0.91 Months 3.2 DT US Compact Stellarator
ITER-like 6.20 2.00 600 97 0.84 Months 15.0 DT ITER @ higher  power, Q
EU A 9.55 3.18 1246 130 0.74 Months 30.0 DT EU "modest extrapolation"
EU B 8.60 2.87 990 115 0.73 Months 28.0 DT EU
EU C 7.50 2.50 794 106 0.71 Months 20.1 DT EU
EU D 6.10 2.03 577 95 0.78 Months 14.1 DT EU Advanced
SlimCS 5.50 2.12 650 118 0.90 Months 16.7 DT JA

Initial heating

* Flux compression, low Rx/R, SND, additional PAUX can achieve Demo level heat-fluxes



The Integrated Fusion Science Mission of NHTX
National High-power advanced Torus eXperiment

To integrate a fusion-relevant plasma-material interface 
with sustained high-performance plasma operation

NHTX will have the flexibility to study:
• Multiple divertor geometries
• Tritium retention and high-T PFCs
• Multiple advanced solid materials
• Liquid surfaces
• Stellarator-like edge magnetic field
• Magnetically expanded strike zone
• Radiative edge zone
• Multiple plasma heating technologies
• INTEGRATED WITH A HIGH-PERFORMANCE PLASMA

Such a device would: 
Develop innovations needed for integrated core and boundary science for 
later phases of ITER, for CTF/FDF, and for a Demo power plant – whether 
Tokamak, ST or Compact Stellarator. 

FTU Lithium Capillary Porous System (CPS)
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Systems code identifies optimal aspect ratio 
A=1.8-2 based on NHTX mission and design

• A=1.8-2 maximizes P/R and IP (or IP×A) at fixed magnet power
– Fixed HH98y2=1.3, use κ(A) and n=1 no-wall limit βN(A) scalings
– IP from BS and NBI – additional LHCD, ECCD/EBW to be assessed
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NHTX has uniquely high Pin / PL-H > 10 needed to 
test radiative solutions at frad > 90% for Demo

• Pin / PL-H at 0.85 × nGreenwald
– ITER 3.6
– JT-60SA 4.9
– NHTX 12
– ARIES-AT 11

• Is high radiated power fraction to reduce divertor
heat flux compatible with high performance?

• Is thermal instability problematic in burning plasma 
at high radiation fraction?
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NHTX Heating and Current Drive

• Total auxiliary heating and current drive power = 50MW
– Neutral beams:  32 MW, 110 kV D0 NBI, steerable off axis
– 18 MW RF – type to be determined

• Results from NSTX, C-MOD, DIII-D will be critical to 
selection of RF system(s)
– EBWCD: High efficiency, remote coupling.
– LHCD: High efficiency, intimate coupling.
– ECCD: Inside-launch 120 GHz 2nd harmonic: lower efficiency, 

more complex access.
– ICRF:  Cost-effective electron or ion heating, intimate coupling

• 2MA bootstrap current at operating point

• For confidence in 3.5 MA steady-state operation, desirable 
to be able to drive ~ 1.5 MA with beams + RF  (R0 = 1m)
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Overview of NHTX design progress

• Systems code has identified favorable design point:
– A=1.8-2, R0=1m, IP=3-4MA, BT=2T, κ=2.7-3, fully non-inductive 
– HH98Y = 1.3, βN=4.5, βT=15%, fBS= 65%, fGW=0.4-0.5 
– Maximizes IP, IP×A, and P/R for given magnet power
– High β possible with Ωφ & feedback stabilization of RWM

• Favorable PF coil configuration identified 
– Divertor flexibility without PF coil modification
– Strong shaping flexibility (κ, δ, squareness, flux expansion)
– Large midplane vertical gap for beam steering (ΔZ), diagnostics, access

• NBI current drive efficiency & profiles studied with TRANSP
– RTAN and ZTAN variations allow for JNBI profile control
– NBICD scalings used in systems code are reasonable
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Single coil set supports range of divertor configurations

Pumped DND, JET-likeOpen DN divertor

Example configurations:
ITER-like LSN divertor
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Coil set supports wide range of boundary shapes

DND w/ negative 
squareness ζ ≈ -0.15

DND w/ near zero
squareness

DND w/ positive
squareness ζ ≈ 0.25

Example
LSN shape

• Shaping plays important role in determining global and ELM stability
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Divertor coil set supports wide range of flux expansion

fexp = 2.8
αp=22° αt=5.1°

Poloidal flux expansion factor fexp ≡ |∇ψ|mid-plane / |∇ψ| strike-point
Poloidal B-field angle of incidence into target plate ≡ αp

Total B-field angle of incidence into target plate ≡ αt

fexp = 9
αp=23° αt=1.8°

fexp = 17
αp=25° αt=1.0°

fexp, α values computed at strike-point

fexp = 35
αp=64° αt=1.1°

Flux contours have 5mm separation at midplane
R=0.95m
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NHTX can test wide range of divertor heat flux values

ITER-like div. - LSN 
fexp = 3 at strike-pt

Compatible with
solid divertor material?

Note: ITER designed
for qdiv ≤ 10MW/m2

DND - fexp = 35 at strike-point
…but can one 

pump over large 
surface area?

Use slowly-flowing 
liquid lithium?
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NBICD assessment w/ TRANSP uses thermal profile 
shapes based on high fNI = 60-70% NSTX discharges

• Scale ne, Te profiles from 116313 - fixed Ti / Te = 1.5, βT=14%
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TF coil layout (10 coils) and sizing allows 
for RTAN variation of NBI for J-profile control

• RTAN range = 1m ± 0.2m 
possible with cross-over 
point at vessel entrance
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Driven current increases × 3 for RTAN=0.7 1.3m 
and increases more quickly w/ radius for RTAN > R0

NBICD for ne = 1.4×1020m-3, Te=4.2keV, fGW = 0.43

R0

∝ RTAN
1.7
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At design point, tangency radius of injection 
controls degree of shear reversal and radius of qMIN

ne = 1.4×1020m-3, Te=4.2keV, fGW = 0.43, βt = 14%

RTAN βN fBS IP [MA]

120cm 4.5    67%    3.1
110cm
100cm
90cm
80cm 5.0    83%    2.8

ZTAN=0cm

q
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With sufficient confinement and/or PAUX, NHTX can 
investigate high fBS AT physics relevant to Demo 

Next step:  assess stability and sensitivity to n,T profile shapes

ne = 2.0×1020m-3, Te=6.0eV, fGW = 0.46, βt = 28%

q

ZTAN=0cm

RTAN βN fBS IP [MA]

120cm 6.5    86%    4.3
110cm
100cm
90cm
80cm 6.8    93%    4.1

If βt is doubled, bootstrap current dominates 
NBI-driven current, and RTAN controls only q(0)
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Ability to control density and operate at 
fGW < 0.5 crucial for high NBICD efficiency

∝ Te
0.97 / ne

1.29

Design point
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LHCD for lower-density operating points 
and current ramp-up appears promising

• Require n|| >3.5 for ne(0)=6×1019m-3

• Find vph / vthe = 1.5-3 for Te(0)=3keV

Core LHCD efficiency = 0.1 A/W
1MA of IP for 10MW delivered

|B| (Tesla)

ne (1020m-3)

fLH (GHz)

n|| (∝ 1/R)

n|| crit

Te (keV)

vph / vthe

vph / vthe
for high ηCD

Sn
e

pe
crit +

Ω
≈

ω
||
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Summary

• Systems code has identified favorable design point:
– A=1.8-2, R0=1m, IP=3-4MA, BT=2T, κ=2.7-3, full NICD
– HH98Y = 1.3, βN=4.5, βT=15%, fBS ≥ 65%, fGW=0.4-0.5
– High β possible with Ωφ & feedback stabilization of RWM

• Favorable coil geometry found for maximum flexibility
– Divertor flexibility critical element of NHTX mission

• NBI ZTAN and RTAN variations allow control of JNBICD
– Analyzing engineering tradeoffs of ΔR vs. ΔZ beam shift

• Beginning studies of additional heating & CD sources
– Up to 18MW of additional RF power
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Sign-up
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