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Properties of ITG turbulence driven ion transport in NSTX plasmas,
comparison with DIII-D

Simulation of toroidal momentum transport
Anisotropic properties of neoclassical equilibrium

Recent NSTX-physics-oriented development of GT'S with respect to
electron physics
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Gyrokinetic PIC Simulations of Neoclassical Transport

e GTC-Neo: 0f global Gyrokinetic PIC Code
[Wang et al., Comput. Phys. Commun. (2004); Phys. of Plasmas (2006)]

e Calculates neoclassical fluxes, E,, j;, etc

e Nonlocal physics due to large ion orbits

e T'wo species now: ions + electrons

e Momentum, energy and particle number conserving collisions

e Interfaced with MHD equilibrium codes and TRANSP data base
e It is routinely applied to the analysis of NSTX discharges
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GTS Turbulence Simulations Show That IT(G Modes
Have Low Contributions to Energy Transport
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e — simulation radial domain: 0.2 < r < 1.0; — adiabatic electrons;
— equilibrium E X B shear flow not included; — ion-ion collisions included

e ['T'G turbulence has significant fluctuation amplitudes, but drives small ion
energy transport in NSTX plasmas (sometimes below neoclassical level)!



GTS Simulations Show that I'TG Modes
Are Relevant for DIII-D, But Not for NSTX
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e In contrast, in DIII-D plasmas, ITG turbulence can drive large transport

(x10 neoclassical level)
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ITG Modes Drive Significant Potential Fluctuations
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e Turbulence fluctuation levels for two machines are actually comparable
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Mixed Scaling between I'TG and Neoclassical Transport
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e To compare neoclassical and turbulent transport, we need to discuss them

using a unified language



Nonlocal Features due to Turbulence Spreading
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e Spreading in outward direc-

tion is more significant

e The reversed magnetic shear
in the inner side may provide

stronger damping
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Nonlinear toroidal couplings are respon-
sible for the formation of a down-shifted
toroidal spectrum in the fully developed

ITG turbulence regime.

Low-k measurements can tell if ITG ex-
ists and drives any transport in NSTX
— to validate simulation
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e [inear ion-ion collisions:

Cli(6f) = C(of, fo)
(drag & diffusion)

e Collisions enhance I'TG driven ion heat flux, but not significantly

e We may expect more sensitive dependence on collisions in marginal

instability regime

rla=0.64 B

with i-i collisions  —
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time
+ C(f()a 5f)

(effect of perturbed field particles)
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Effects of Equilibrium E x B Shear Flows
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e Equilibrium radial electric field is determined by neoclassical dynamics,
and is calculated by GTC-Neo self-consistently

e I'TG is stabilized when equilibrium E x B shear flow is included
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linear phase
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e Using an equilibrium E x B flow with £ = FE,./3
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Neoclassical Momentum Transport Is Significantly
Enhanced for Steep Toroidal Rotation Gradient
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e G'T(C-Neo is used to calculate an accurate baseline of mo-
mentum transport, which is required to understand any

anomalous momentum transport and torque

—nonlocal properties of neoclassical angular momentum

transport associated with steep gradients, large orbits

— off-diagonal momentum transport associated with
temperature and pressure gradients in collisionless
regime

— poloidal electric field in rotating plasma and effect on

momentum transport

e Simulations with steep rotation gradient obtained an-
gular momentum transport 5-6 times larger than
theory(Hinton-Wong).
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Toroidal Rotation Model in GTS: Turbulence Driven I’y

Turbulence fluctuation part 9 f:

Do f . dfo

— . * l
Dt Vg - Vfo+b* - V(— ¢)8v||+0(5f1)

Neoclassical equilibrium fy:

dfo dfo

5 T (vb + vE, +v3) - Vfo —b* - V(uB + _(I)O) = C;(fo, fo)-
t (%H
Lowest order equilibrium solution consistent with plasma rotation:
m’i o (% i 2
fo = fsm = n(r, ‘9)(27rT )3/2em T 3=V Bl

2 ~
m’iU,L' e®(

parallel flow: U; = Iw;/B, density: n(r,0) = N(r)e 2T7i =~ T

D — U
Dof = |(-- ) -VInT —vg-Vinn(r,0) — m(v) )v_fz - VU;(r,0)
Dt 1
mU; 1 - Ui
B . —_
+Ti’UH vE - uV T (U||b—|—’Ud) V(ep)(1 v ) fo

{(n(r,0)), T(r), ®o(r), and w:(r)} = turbulence-driven fluxes
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Anisotropic Properties and Structure of Neoclassical
Equilibrium of NSTX Plasmas
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e Plasma anisotropy with respect to 7} and T is insignificant

e However, there exists considerable variation of 7; on magnetic surface

(up to ~ 20% difference between outer and inner sides on mid-plane)
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Anisotropic Properties and Structure of Neoclassical
Equilibrium of NSTX Plasmas
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e Difference increases with A ;/Lr,, but insensitive to density gradient

e As a consequence, pressure iso-surfaces are different than magnetic
surfaces
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Recent Development of GTS and
NSTX-physics-oriented Algorithm

e Generalized Poisson Solver to solve integral equation for total potential
¢ = §P + (P) using superLU/PETSc
— previous solver solves for §® and (®) separately using approximations:
i) Pade approximation I'g(b) = Iy(b)e™® ~ 1/(1 + b) and
ii) <<f>> 2 (/CE — not justified for NSTX geometry!
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Recent Development of GTS and
NSTX-physics-oriented Algorithm

e Electron physics via split-weight scheme

0P
fe — feO — eT feO +5he

0oh ~ e e Ooh
c D - Voh, — b* - B+ —& d c
ot + Up Vv V(,u + m. 0+ m. ) 8’0“

P
feo+vp -V <€T ) feo + CL(She).

5 ~ € 8f60 e 00P
- — ‘V e b*‘v @

vE feo + (me )aUH +Te ot
UBEU||[A)—|—UEO—|—U_E—I—U_&

D0P

e on RHS can cause numerical instability if using direct numerical

derivative

Iterative method taking NA electrons as higher order correction — not justified

for NSTX because of high fraction of trapped electrons
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Recent Development of GTS and
NSTX-physics-oriented Algorithm

Need to introduce additional equation for ag—;b:
e 0O 0D 1 - > VB e
—(— = —)=—(-V - I} T'e)+Usg - (2— — =—VO
T ot " o) T gV Lt Vo) H e (2 = Vi)

F_; = /(UHIA) + ’UEO + vg + v_g)éhed?’v

', = /(’U”i) + UE*O +vE + U_&)dfid?)’v

The corresponding linear problem is solved using superLU/PESTc
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Our gyrokinetic simulation studies contribute several interesting remarks to

the observation that the ion transport is at neoclassical levels in NSTX.
e In NSTX plasmas, ITG driven ion energy transport is at neoclassical level.

e In contrast, for DIII-D discharges, I'TG turbulence is shown to drive large

transport (x10 neoclassical level).

e Turbulence fluctuation levels for two machines are actually comparable
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e A mixed transport scaling (7)

e Self-consistent equilibrium E x B flows can strongly stabilize ITG.

e Kffect of collisions is weak.
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Neoclassical momentum transport and equilibrium properties:

e Neoclassical angular momentum transport is strongly enhanced for steep

toroidal rotation gradient

e Significant T; variation on magnetic surface is found due to the

neoclassical effects associated with large ion orbits and steep T profile.
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GTS: generalized gyrokinetic simulation model implemented using GTC

[Lin et al, Science (1998)] architecture to simulate tokamak experiment

[Wang et al., Phys. of Plasmas (2006 )]

Shaped cross-section; experimental profiles; consistent rotation and
equilibrium E x B flow; linear Coulomb collisions; - - -

Interfaced with MHD equilibrium codes (based on ESI interface by
Zakharov and White) and TRANSP data base

Benchmarked in simple geometry limit

——
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