Plasma Response to Lithium-Coated Plasma-Facing Components in NSTX

Supported

bv

U.S. DEPARTMENT OF

ENERGY

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL **PPPL** PSI **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC Irvine** UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

M.G. Bell for the NSTX Research Team

36th EPS Conference on Plasma Physics July 2, 2009

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

Office of

Science

NSTX Designed to Study High-Temperature Toroidal Plasmas at Low Aspect-Ratio

Aspect ratio A	1.27 – 1.6
Elongation k	1.8 – 3.0
Triangularity δ	0.2 - 0.8
Toroidal Field B _{T0}	0.4 – 0.55 T
Plasma Current I _p	1.5MA
Auxiliary heating:	
NBI (100kV)	7 MW
RF (30MHz)	6 MW
Central temperature	1 – 5 keV
Central density	≤1.2×10 ²⁰ m ⁻³

NSTX is Exploring and Developing Lithium-Coated Plasma Facing Components (PFCs)

2005: Injected lithium pellets into He discharges prior to D NBI shot

2006: LIThium EvaporatoR (LITER) deposited lithium on room-temperature center column and lower divertor

2007: Larger evaporator re-aimed to increase deposition rate on lower divertor

2008: Dual LITERs to eliminate shadowed regions on lower divertor

- Also used "lithium powder dropper" to introduce lithium through SOL

2009: Routine use of dual LITERs

- 80% of discharges now have lithium applied beforehand
- Complements and builds on experience with lithium coating of limiters in tokamaks TFTR (early 1990s), CDX-U (liquid), T-11, FTU, HT-7
 - Now also experimenting with lithium in stellarator TJ-II and RFP RFX

Dual LITERs Replenish Lithium Layer on Lower Divertor Between Tokamak Discharges

- Electrically-heated stainless-steel canisters with re-entrant exit ducts
- Mounted 150° apart on probes behind gaps between upper divertor plates
- Each evaporates 1 30 mg/min with lithium reservoir at 520 630°C
- Plumes of lithium vapor are roughly Gaussian in angular distribution
- Rotatable shutters interrupt lithium deposition during discharges & HeGDC
- Withdrawn behind airlocks for reloading and initial melting of lithium charge

Lithium Coating Reduces Deuterium Recycling, Suppresses ELMs, Improves Confinement

No lithium (129239); **260mg lithium** (129245)

ONSTX

Improvement in Confinement Arises from Broadening of Temperature Profiles

- All plasmas in H-mode
- TRANSP analysis confirms electron thermal transport in outer region progressively reduced by lithium
- Ion confinement close to neoclassical level both with and without lithium

6

ONSTX

Broader T_e Profile with Lithium Coating Reduces Both Inductive and Resistive Flux Consumption

• Critical issue for development of low-aspect ratio tokamaks

 Reduction occurs despite increase in <Z_{eff}> in ELM-free H-modes after lithium coating

NSTX M.G. Bell / 36th EPS Conf. / 090702

Lithium Coating is Significantly Affected by Plasma Interaction in Divertor Strike Point Region

- Lithium applied between discharges typically 20 600 mg
 More than needed to react all injected D₂, typically 5 15 mg
- Lithium deposition has obviated need for HeGDC between discharges
- Quartz-crystal micro-balance (QMB) data implies maximum lithium thickness deposited is 5 – 160 nm on strike point of inner divertor plate
- Effects of lithium coating decay after several (3 10) discharges
- Formation of lithium compounds (Li₂O, LiOH, Li₂CO₃) after vacuum vessel is opened reveals areas of lithium deposition <u>Typical LSN equilibrium</u>

Lithium accumulated in private flux region

Lithium depleted at strike points

 In other areas lithium "shadows" are sharp

• PFC surfaces cleaned with water and lightly sanded after oxidation complete

Lithium Concentration in Plasmas Remains Low but Carbon Concentration Rises with Lithium Coating

Lithium 180mg lithium 135cm

Carbon

180mg lithium

130723 130724 130725 130726 130727 130728

0.8

0.6

1.0

Metals Responsible for Most of the Increase in Radiation When ELMs Suppressed by Lithium

Radiated power profile becomes centrally peaked in ELM-free discharges

- VUV and SXR spectra show iron lines (Fe X – XVIII) increasing during ELM-free periods
- Radiated power profile remains hollow when ELMs are present
 - Metals still present early but do not accumulate
- If increase in radiation is ascribed to iron-like metals:
 - $n_{"Fe"}/n_e \sim 0.1\%$
 - $-\Delta Z_{eff}$ ("Fe") ~ 0.3
- Dependence of radiation on I_p and midplane outer gap suggests sputtering by unconfined NB ions in early phases is source

Suppression of ELMs Occurs By Lengthening and **Coalescence of ELM-free Periods**

Lithium Affects ELMs Through Changes in Temperature and Pressure Profile at Edge

• Multiple timeslices mapped into composite profiles using EFIT equilibrium

• Analysis shows improved stability to peeling-ballooning modes with lithium

External Non-Axisymmetric Coils Can *Induce* Repetitive ELMs in Discharges with Lithium Coating

M.G. Bell / 36th EPS Conf. / 090702

NSTX

J. Canik, R. Maingi

Lithium Coating by Dropping a Stream of Lithium Powder into SOL Produced Similar Benefits to LITER

- Lithium powder (~40µm) stabilized against rapid oxidation in air by surface coating of Li₂CO₃ (<0.1%)
- Introduced by oscillating a piezo-electric diaphragm with a hole in the center on which the powder is piled
- Typical flow rates 5 40 mg/s: well tolerated by plasma, even in startup

M.G. Bell / 36th EPS Conf. / 090702

NSTX

D. Mansfield

With Lithium, CHI Initiated Discharges Successfully Coupled to Inductive Ramp-up with NBI Heating

- CHI generates initial current of ~100kA on closed flux surfaces
- Discharge is under full equilibrium control after CHI initiation
- Discharge transitioned to H-mode at usual time

Lithium Coating with n=3 Error Field Correction and n=1 RWM Feedback Extends High-β_N Discharges

116313 – no mode control or lithium 129125 – with mode control & lithium

- Lithium helps control recycling, density
- Flux consumption reduced
 - Lower density increases NBI-driven current
 - High elongation increases bootstrap current
 - Central solenoid supplied only 0.6 Wb flux
- EFC/RWM control sustains rotation, $\boldsymbol{\beta}$
 - Onset of n=1 rotating modes avoided
- NSTX record pulse-length = 1.8s
 - Reached limit imposed by TF coil heating
- $\beta_{\text{N}} \geq$ 5 sustained for 3-4 τ_{CR}

In 2010, NSTX Will Begin Investigating Liquid Lithium on Plasma Facing Components

Liquid Lithium Divertor Modules

- Replace rows of graphite tiles in outer lower divertor with segmented plates
- Molybdenum surface on copper substrate with temperature control
 - Heated above Li melting point 180°C
 - Active heat removal to counteract plasma heating
- Initially supply lithium with LITERs and lithium powder dropper
- Evaluate capability of liquid lithium to sustain deuterium pumping
- Laboratory measurements in PISCES and experience in CDX-U show that liquid has much higher capacity for deuterium retention than solid

Lithium Coating of Carbon PFCs Has Shown Many Benefits for Divertor Plasma Operation in NSTX

- Reduces hydrogenic recycling
- Reduces H-mode threshold power by up to a factor 4
- Improves confinement
 - Electron confinement increased up to 40%
 - Broader $\rm T_{\rm e}$ reduces both inductive and resistive flux consumption
- Suppresses ELMs in H-mode plasmas
 - ELM suppression increases carbon and high-Z metallic impurities
 - Lithium concentration remains very low
 - Metals responsible for secular rise in central radiation
 - ELMs triggered by external coils reduced deleterious effects of impurities
- Coaxial Helicity Injection initiation successfully coupled to inductive ramp-up following lithium coating
- Lithium, in conjunction with active error field correction and mode control, has enabled longer pulse lengths

Contributors

- J. Ahn, J. Allain, M. Bell, R. Bell, J. Berkery, J. Breslau, J. Canik,
- D. Darrow, L. Delgado-Aparicio, T. Evans, E. Fredrickson, D. Gates,
- S. Gerhardt, N. Gorelenkov, T. Hahm, W. Heidbrink, J. Hosea,
- T. Jarboe, M. Jaworski, R. Kaita, J. Kallman, S. Kaye, C. Kessel,
- J. Kim, E. Kolemen, S. Kubota, H. Kugel, R. La Haye, B. LeBlanc,
- K. Lee, F. Levinton, R. Maingi, R. Majeski, J. Manickam,
- D. Mansfield, R. Maqueda, S. Medley, J. Menard, D. Mueller,
- B. Nelson, R. Nygren, M. Ono, T. Osborne, J. Park, S. Paul,
- M. Podesta, R. Raman, P. Ross, P. Ryan, S. Sabbagh, C. Skinner,
- P. Snyder, A. Sontag, V. Soukhanovskii, D. Stotler, B. Stratton,
- G. Taylor, K. Tritz, W. Wampler, J. Wilgen, H. Yuh, S. Zweben