

Supported by

RWM Stabilization and Maintenance of High Beta Plasmas in NSTX

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL I odestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U Purdue U Sandia NL Think Tank, Inc. UC Davis UC Irvine UCLA UCSD **U** Colorado **U** Marvland **U** Rochester **U** Washington **U** Wisconsin

v1.5

S.A. Sabbagh¹, J.W. Berkery¹, S.P. Gerhardt², J.M. Bialek¹, R.E. Bell², R. Betti³, L. Delgado-Aparicio², D.A. Gates², B.P. LeBlanc², J. Manickam², J.E. Menard², K. Tritz⁴

¹Department of Applied Physics, Columbia University, NY, NY ²Plasma Physics Laboratory, Princeton University, Princeton, NJ ³University of Rochester, Rochester, NY ⁴Johns Hopkins University, Baltimore, MD

> 37th Conference on Plasma Physics European Physical Society June 21st – 25th, 2010

Dublin, Ireland

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kvoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati **CEA.** Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep U Quebec

NSTX MHD Research is Addressing Needs for Maintaining Long-Pulse, High Performance Spherical Torus Plasmas

Motivation

00 NSTX

- □ Maintenance of high β_N with sufficient physics understanding allows confident extrapolation to ST applications (e.g. ST Component Test Facility, ST-DEMO)
- **Sustain** target β_N of ST applications with margin to reduce risk
- Leverage unique ST operating regime to test physics models, apply to ITER

Related Research Addressed

- **D** Physics of plasma rotational stabilization to maintain high β_N
- Physics of resistive wall mode (RWM) active control
- Physics of 3D fields to control plasma rotation profile (for greater stability, confinement)
- □ Multiple scalable control systems to maintain $<\beta_N >_{pulse}$
- Possibility of multiple RWMs that can affect active mode control

NSTX is a spherical torus equipped for passive and active global MHD control, application of 3D fields

- High beta, low aspect ratio
 - □ R = 0.86 m, A > 1.27 □ $I_p < 1.5$ MA, $B_t = 5.5$ kG □ $\beta_t < 40\%$, $\beta_N < 7.4$
- Copper stabilizer plates for kink mode stabilization
- Midplane control coils
 - □ n = 1 3 field correction, magnetic braking of V_{ϕ}
 - n = 1 resistive wall mode (RWM) control
- Varied sensor combinations used for RWM feedback
 - □ 48 upper/lower B_p, B_r

(D) NSTX

Resistive wall modes can terminate discharges at significant plasma rotation levels

- \Box Instability occurs at relatively high rotation level, and <u>not</u> at highest β_N
- Understanding this physics is <u>crucial</u> to ensure sustained plasmas, and to extrapolate to future devices

Modification of Ideal Stability by Kinetic theory (MISK code) investigated to explain experimental RWM stabilization

- Simple critical ω_{ϕ} threshold stability models or loss of torque balance do not describe experimental marginal stability
- Kinetic modification to ideal MHD growth rate
 - Trapped and circulating ions, trapped electrons
 - Alfven dissipation at rational surfaces
- Stability depends on

$$\gamma \tau_{w} = -\frac{\delta W_{\infty} + \delta W_{K}}{\delta W_{b} + \delta W_{K}}$$

Hu and Betti, Phys. Rev. Lett **93** (2004) 105002.

5

Integrated $\underline{\omega}_{\phi}$ profile: resonances in δW_{K} (e.g. ion precession drift)

 $\underline{\omega}_{\phi}$ profile (enters through ExB frequency)

Particle <u>collisionality</u>

<u>Trapped ion component of δW_{κ} (plasma integral)</u>

$$\delta W_{K} \propto \int \left[\frac{\omega_{*N} + \left(\hat{\varepsilon} - \frac{3}{2}\right)\omega_{*T} + \omega_{E} - \omega - i\gamma}{\left\langle \omega_{D} \right\rangle + l\omega_{b} - i\nu_{eff}} + \omega_{E} - \omega - i\gamma \right] \hat{\varepsilon}^{\frac{5}{2}} e^{-\hat{\varepsilon}} d\hat{\varepsilon} \quad \leftarrow \text{Energy integral}$$

MISK calculations consistent with RWM destabilization at intermediate plasma rotation; stability altered by collisionality

□ Destabilization appears between precession drift resonance at low V_{ϕ} , bounce resonance at high V_{ϕ} J.W. Berkery, et al., PRL **104** (2010) 035003

Column 2

ITER advanced scenario 4 has RWM stabilized by energetic particles near marginal at $\beta_N = 3$ (MISK computation)

Equilibrium

- With β_N = 3 (20% above n = 1 nowall limit)
- Plasma rotation profile linear in normalized poloidal flux

Plasma rotation effect

- □ Stabilizing precession drift resonance enhances stability near ω_{ϕ} = 1.2 $\omega_{\phi}^{\text{model}}$
- Energetic particle (EP) effect
 - Isotropic slowing down distribution of alphas
 - □ Alpha particles are required for RWM stabilization at <u>all</u> ω_{ϕ}
 - □ At ITER expected $\beta_{\alpha}/\beta_{\text{total}} = 0.19$, RWM stable at $\omega_{\phi} = \omega_{\phi}^{\text{model}}$
 - With Polevoi rotation profile (IAEA FEC 2002), plasma is only marginally stable
 - See J.W. Berkery, poster P4.106, this meeting

8

NSTX (co-NBI) utilizes 3-D field-induced neoclassical viscosity (NTV) in collisionless plasma regime to alter plasma rotation

Present goal

- Investigate NTV-induced magnetic braking over range of collisionality, $\omega_{\rm F}$ (i.e. $v_{\rm i}/|\epsilon nq\omega_{\rm F}|$)
 - Key for ITER, ST Component Test Facility
 - If $v_i/|\epsilon nq\omega_F| \ll 1$: NTV saturated (indep. of v)
 - If $v_i / |\epsilon n q \omega_{r}| > 1$: NTV ~ 1/v
 - If low $\omega_{\rm F}$ (< $\omega_{\nabla \rm B}$): NTV maximized (indep. of v) (superbanana plateau)

NSTX experience

 ω_{ϕ} damping consistent with "1/v regime" magnitude & scaling (T_i^{5/2})

Recent results

00 NSTX

- \Box NTV braking observed over all $v_i/|\epsilon nq\omega_{F}|$ variations made in experiment
 - Strong NTV braking observed at increased T_i even if $v_i/|\epsilon nq\omega_F| < 1$
- Stronger braking at constant 3-D applied field as $\omega_{\rm F}$, $\omega_{\rm a}$ reduced
 - <u>Not</u> due to resonant drag at rational q (no locking, no $1/\omega_{\phi}$ scaling of torque)
 - Perhaps due to "island NTV" ~ ω_{ϕ} (K. Shaing et al., PRL 87 (2001) 245003)
 - Perhaps due to superbanana plateau physics (K. Shaing et al., PPCF 51 (2009) 035009)

 $nq\omega_{F} \varepsilon^{1/2}\omega_{Ti} v/\varepsilon$

$$\left\langle \stackrel{\wedge}{\boldsymbol{\ell}}_{t} \bullet \stackrel{\rightarrow}{\nabla} \bullet \stackrel{\leftrightarrow}{\Pi} \right\rangle_{(1/\nu)} = B_{t} R \left\langle \frac{1}{B_{t}} \right\rangle \left\langle \frac{1}{R^{2}} \right\rangle \frac{\lambda_{1i} p_{i}}{\pi^{3/2} v_{i}} \varepsilon^{\frac{3}{2}} (\omega_{\phi} - \omega_{NC}) I_{\lambda}$$

W. Zhu, et al., PRL 96 (2006) 225002 S.A. Sabbagh, et al, NF 50 (2010) 025020

9

Stronger braking with constant n = 3 applied field and β_N as ω_E reduced – accessing superbanana plateau NTV regime

 Stronger braking expected at low ω_E (superbanana plateau regime) (K.C. Shaing et al., PPFC 51 (2009) 035009)

RWM control physics examined, disruptivity initially assessed

- Plasma rotation important for control
 - RWM conversion to rotating, damped kink needs V₆
 - Larger β_N fluctuation at low V
 - RWM control effective at low I_i (key for future STs)
 - n = 1 feedback response speed significant
 - RWM more likely unstable if feedback response is slowed (e.g. slow error field correction)
 - Optimal n=3 error field correction found vs. I_P, B_T

β_N feedback combined with n = 1 RWM control to reduce β_N fluctuations at varied plasma rotation levels

- Prelude to ω_φ control
 - Reduced ω_φ by
 n = 3 braking
 does not defeat
 FB control
 - Increased P_{NBI}
 needed at
 lower ω_φ
- Steady β_N established over long pulse

Column 3

Activity in RWM frequency range coincident in magnetic and kinetic diagnostics investigated as multi-mode RWM

- Magnitude, radial extent increases in SXR as β_N increases; low frequency (~ 30Hz)
- Activity appears separate from unstable RWM
- RWM multi-mode response expected to be significant at high β_N (A.H. Boozer, Phys. Plasmas 10 (2003) 1458.)

Multi-energy soft X-ray reconstructed emission shows mode activity correlated to n = 1 activity seen in RWM magnetic sensors

🔘 NSTX

- Mode activity in RWM frequency range (~30 Hz) seen in both magnetic and kinetic diagnostics
- ME-SXR reconstructions show that mode activity is global
- When active feedback is turned off, mode amplitude grows in time (kinetic and magnetic diagnostics)

For diagnostic detail, see L. Delgado-Aparicio, poster P4.119, this meeting

Multi-mode RWM VALEN computation shows 2^{nd} mode has dominant amplitude at high β_N in NSTX stabilizing structure

δBⁿ multi-mode composition

 Significant spectrum out to ~ 10 modes; 2nd mode has dominant amplitude

Initial VALEN tests of multi-mode time evolution show n = 1 stable eigenmode amplitude dominates least stable mode

Simulated n = 1 toroidally rotating field from RWM control coils

180° toroidal rotation of field shown

Eigenmodes

- track n = 1 applied field phase
- mode 2 amplitude largest, with ratio to mode 1 amplitude of 2-3
- vary in relative amplitude a modest amount

NSTX MHD Research is Addressing Topics Furthering Steady Operation of High Performance ST Plasmas

- □ n = 1 RWM feedback control combined with new β_N feedback control shows regulation of high β_N at varied plasma rotation levels
- RWM instability, observed at intermediate plasma rotation, correlates with kinetic stability theory (J.W. Berkery, et al., PRL 104 (2010) 035003)
 - □ role of energetic particles (EP) under study: see J.W. Berkery poster P4.106
 - ITER advanced scenario 4 requires EP stabilization at expected ω_b
- Strong non-resonant NTV braking observed from all ν_i/εnqω_E(R) variations made

- \square apparent transitions in NTV (stronger magnetic braking) at low ω_{E}
- □ Low frequency ~ $O(1/\tau_{wall})$ mode activity at high β_N being investigated as potential driven (stable) RWM
- Theory shows multi-mode RWM response may be important at high β_N; multi-mode VALEN code illustrates multi-mode spectrum, evolution

SIGN UP / E-mail for poster ELECTRONIC REPRINTS

- See J.W. Berkery at this meeting for immediate questions related to the poster
- Print email address below for poster reprints, or email sabbagh@pppl.gov

Backup Slides

Subjects and Slides

Subjects

Motivation: need high performance sustained indefinitely in future devices

- Success with rotation and active n = 1 control
- Issues remain for sustained stability, addressed by present research
 - RWM at high rotation (RWM stabilization physics), NTV to adjust rotation/control rotation, combined feedback control, multi-mode

Col 1

Outline

- NSTX overview, RWM coils, sensors
- RWM at high rotation 137722
- MISK overview
- Weakened RWM stability due to rotation profile mismatch with resonances

Col 2

- MISK EP result for ITER (point to JWB poster for detail and NSTX XP results)
- NTV overview
- NTV superbanana plateau
- Active control overview
- Combined feedback and varied rotation

Col 3

- NSTX and driven (stable) RWM
- ME-SXR reconstructions
- VALEN multi-mode 1
- VALEN multi-mode 2
- Summary slide

Stronger non-resonant braking at increased T_i

VALEN test of multi-mode time evolution - toroidally rotating n = 1 applied field

Used to determine if eigenmodes will track phase of n = 1 applied field, lock to the plates/vessel, change in relative amplitude

Multi-energy soft X-ray measurements consistent with mode being a driven RWM

TF7

light

Multi-mode VALEN code (RWM control) testing successfully on ITER Scenario 4 cases (reversed shear)

Illustration of $B^{n}(\theta,\phi)$ on plasma surface from mmVALEN for **ITER Scenario 4**, $\beta_N = 3.92$

Resistive wall modes can terminate NSTX plasmas at intermediate plasma rotation levels without active control

- \Box Change in plasma rotation frequency, ω_{o}
- Growing signal on low frequency poloidal magnetic sensors
- Global collapse in USXR signals

0 NSTX

Leads to β collapse and plasma disruption \Rightarrow high ω_{α} alone is not enough!