

Supported by

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank, Inc. UC Davis UC Irvine UCLA UCSD U Colorado **U Illinois U Marvland U** Rochester **U** Washington **U Wisconsin**

R. J. Maqueda, S. J. Zweben, PPPL

S. Kaye, A. L. Roquemore, D. P. Stotler (PPPL) D. A. Russell, J. R. Myra, D. A. D'Ippolito (Lodestar Res. Corp.) R. Hager, K. Kallatschek (Max-Planck-Institute) T. Munsat, Y. Sechrest (University of Colorado) F. M. Poli (University of Warwick) and the NSTX Research Team

> 37th EPS Meeting – Poster P2.147 June 21-25, 2010 – Dublin, Ireland

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP. Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Office of

Science

Overview

- Edge turbulence and intermittent filamentary structures (blobs) routinely seen in low field side scrape-off layer.
- The main L-H transtion is seen as a sharp reduction in edge/SOL turbulence.
- Quiet periods, with a frequency of ~3 kHz, are seen in L-mode before the transition. Poloidal flow tends to reverse direction.
- Fine structured, intermittent filaments are also seen on the lower divertor target plates.
- Divertor filaments correspond to interaction with target plates of midplane blobs.
- Correlation between divertor and midplane lost close to the outer strike point, consistent with 'magnetic shear disconnection' (Cohen and Ryutov, Nucl. Fus. 37, 621 (1997)).
- Experimental data used in collaboration with SOLD 2-D fluid turbulence code to study cross-field energy transport in SOL.

Supported by US DOE under grant DE-AC-09CH11466.

Experimental setup (GPI diagnostic)

- Camera used to view visible D_{α} emission from 24 x 24 cm box of the edge plasma just above low field side (outer) midplane.
- Deuterium gas puff is injected to increase image contrast and brightness. Gas puff <u>does not perturb</u> local (nor global) plasma.
- View aligned along B field line to see
 2-D structure ⊥ B. Typical edge
 phenomena has a long parallel
 wavelength, filament structure.
- For more diagnostics details: R.J. Maqueda et al., Rev. Sci. Instrum. 74(3), p. 2020, 2003.

• For previous GPI results see: S. J. Zweben, et al., Nucl. Fusion 44, p. 134, 2004.

Blob simulation and synthetic GPI in the SOLT code

J. Myra, D. Russell, D. D'Ippolito, Lodestar Research Corp.

- The 2D fluid turbulence code SOLT simulates blob formation and propagation at the midplane.
 - Recent code upgrades allow synthetic GPI for a D-puff (as well as He-puff)
 - The equation set has been expanded to included the collisional (disconnected) regime.
 - The NSTX SOL is typically in the sheath connected regime.
 - Sheath connection is confirmed by results from the linear full geometry 2DX code [Baver et al.] except near the separatrix.
- In low power, ELM-free H-mode simulations, blob emission is present only when triggered by a transient perturbation. Results compare qualitatively to sparse emission in the experimental data.
 - near SOL width appears not to be set by detached blobs
- In higher power NSTX discharges, simulated and observed turbulence levels, as characterized by $\delta I_{rms}/\langle I \rangle$ are insensitive to I_p (at constant B) in two comparison shots.

SOLT code: D. A. Russell et al., Phys. Plasmas #122304 (2009)

Quiet Periods and the L-H Transition

Place this slide so that next slide covers bottom part.

Quiet Periods Preceding Transition

• Sometimes GPI images in L-mode look like H-mode !

Define "Scrape-off Layer Fraction"

- F_{sol} = fraction of GPI D_{α} light located outside separatrix
- Measures "H-mode-ness", $F_{sol} \le 0.15$ seen in H-mode
- F_{sol} determined by shape of n, T_e profiles near separatrix

- F_{sol} frequency spectrum has a broad peak at f ~ 3±1 kHz
- Quiet periods occur up to 30 msec before L-H transition

Quiet Periods vs. Poloidal Flow

- Poloidal flow V_{pol} measured from GPI turbulence motion
- F_{sol} and $V_{pol} \sim 50\%$ correlated within ±3 cm of separatrix

Geodesic Acoustic Mode (GAM) Analysis

R. Hager, K. Hallatschek, IPP Garching

- GAM expected roughly at f(Hz)= $(1/\pi R) [\gamma(T_i+T_e)/m_i]^{1/2} G$
- linear simulations show three GAM candidates for NSTX #135042
- nonlinear simulations show low frequency mode (red) excited at 3 kHz for T_i+T_e ~ 40 eV

Shear Preceding Transition

- Dimensionless shear: S = (dV_{pol} / dr) (L_{rad} / L_{pol}) τ
- V_{pol} and S reverse sign during quiet periods (F_{sol} <0.2)
- Turbulence shear S is not changing before L-H transition, so does not appear to trigger transition
 9 shots

Nonlinear Bicoherence Analysis

F.M. Poli, U. Warwick

- Total bicoherence b²_{tot} has minima during quiet periods in all frequency ranges until 2 ms before L-H transition
- Total bicoherence slightly increases ~0.5 ms before transition in the low- to intermediate- frequency range

Intermittency on the divertor target

Place this slide so that next slide covers bottom part.

11

Moving striations seen on divertor target

Shot 124750: 596.525 ms to 596.739 ms

Footprint of 3 cm diameter flux tube

 Striations move toroidally (counter-clockwise from above) and radially outwards.

12

As blob filaments move in the SOL, their footprints move toroidally/radially in the divertor

- Radial movement (cyan-redpurple) results in movement "along" the striation spiral.
- Poloidal movement (blackred-green) results in toroidal movement (or, due to barberpole effect, inward radial movement).
- Connection length from GPI plane to divertor is ~4 m in the far SOL.

Good correlation observed between GPI and divertor target Li light

Cross-

correlation

- Red arrow indicates position of best cross-correlation.
- Green arrow indicates position of image 0-time delay mapping between GPI image (slide 13) and divertor.
- Toroidal mismatch between red and green ٠ positions due to high uncertainty (uniformity) in the toroidally elongated footprints.
- Radial mismatch possibly due to uncertainty in the separatrix position at the midplane. Good correlation is observed 1.2 cm (mapped to midplane) outboard of green mapped position.

Reference Lil image showing striations

14

Good correlation observed down to $\psi_N \sim 1.04$, in low X-point case

- Allowing correlation to "early" (within 100 ms) divertor events, correlation can be obtained in extended regions of the top-down images.
- In the case of a low X-point an "early" band of correlation at ψ_N ~ 1.04 appears, corresponding to the striation going one whole turn around the center column (insert).
- No improvement is seen at small ψ_{N} in the case of a high X-point.

Striations close to outer strike point are not related to midplane blobs

GPI at low ψ_N , even though footprints should "spiral" around center stack.

• Striations at low ψ_N consistent with toroidally symmetric fluctuations (i.e., non-spiral).

Summary and conclusions

- Quiet periods in edge turbulence and SOL intermittency appear un-related to L-H transition.
- Quiet periods may be related to Geo-Acoustic Modes (GAM).
- Turbulence shear not changing just prior to L-H transition.
- Fast-moving striations observed on the divertor target plates which correspond to "footprints" of midplane blobs.
- The correlation between the GPI diagnostic (blobs) and divertor light (neutral lithium) is remarkable, but only obtained if the two observation regions are mapped along field lines.
- Good correlation (filament "connection") between the midplane and the divertor target plate can be observed down to $\psi_N \sim 1.04$ in the case of a low X-point.
- Striations at low ψ_N (<1.04) not related to midplane blobs and are consistent with toroidally symmetric fluctuations (circular rather than spiral).

