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Fast ions excite a broad spectrum of The hfCAE typically have one or more sequences modes nearly equally spaced in frequency
modes on NSTX
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A simple dispersion relation for the CAE is modeled as an off-axis well Solution of simple dispersion relation Good agreement found for range

matches experimental frequencies of shots, mode numbers

The simple Alfvén wave « The solutions have nodes or anti-nodes on the
. . . . . . NSTX 141398, 0.23s, n=10, 1.356 MHz . . . .

dispersion relation in cylindrical . midplane, consistent with experimentt.

coordinates can be separated to | 20 NETX 14100 0.2

get the perpendicular part: : i

141398 0.23s

/

1.8

k

* Frequency variation with
toroidal and poloidal mode
numbers in good
agreement.
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After separation the dispersion
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Eigenmodes/eigenvalues for the 1.0}

2-D equation can be found with a . Eigenfunction shape fits @ 0.0
numerical code.

experimental data for m=1.0 ™[ _;; 10

eigenfunction, others less well. #°-06 04 02 00 02 04 06
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Is also well reproduced by range of shots is also well reproduced
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14 15 16 17 18 19 20 21 22 this simple model. by this simple model.
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" NOTATS3TL Like most fast-ion modes on NSTX, Bursts are not entrained in kink, as was Initially individual hfCAEs burst nearly
the hfCAE are a sequence of short bursts previously seen with TAE synchronously...
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uncorrelated with the kink mode Kink plus non-axisymmetric perturbation? Driving mode appears to be the n=11 mode,
' 3 - : with other bursts starting later
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i W Strong correlation of CAE bursts with kink aesthetics.
0 s L s I suggest that CAE stability is modulated by kink. Similar synchronous behavior seen poloidally.

-
-

woworg — Modulation of hfCAE burst frequency The hfCAE have only been seen in H-modes Burst-frequency capture by kink seen
seen to frequencies below 1 kHz with flat or hollow density profiles in modified Predator-Prey type model

- At lowest frequency, natural burst frequency ———— 1~ +3 + hfCAE show up shortly Fast-ion mode drive 1.4
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hfCAE are believed to peak in blue
region.

Plasma rotation is sheared, but
relatively low for this shot.

Average rotation frequency over
mode region is about 5 kHz. :

Magnetic shear is low, but shouldn’t ¢ ™ M 12 te 14 e 2y = Varve = Vaany L+ 08I0(@0, 1)
be important.
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Simulation with damping modulated by 2% captures burst frequency Predator-prey equations have a cyclic simple Summary of observations

. . . . . attractor solution (and a trivial point solution
- Source, damping, drive, fast ion loss dependence on mode amplitude adjusted to

give ‘natural’ burst frequency of ~7 kHz, but only in ‘noisy’ system. ' : o | * Aftractor is not strange; High frequency, co-propagating Compressional Alfvén
#*1  figure shows evolution of Eigenmodes are seen coincident with the onset of a low

] attractor as ‘kink frequency’ frequency kink mode.

B0<timo<100%g \. 1 is swepttowards natural

- Frequency-capture becomes weaker as modulation frequency drops below natural T { i resonant frequency. M_ode.frequencne.s,.mode StructL_JreS ln. good agreement
burst frequenc : _ _ with simple predictions of 3-D dispersion relation.
| q ien Y- Mode amplitude increases

20: \ TN ] 20: = @ . 28 - : | as frequency drops. High frequency CAE are globally bursting modes.
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- With modulation frequency higher than natural burst frequency, burst frequency is
modulated at the kink frequency and its harmonics.

. Bursts of individual hfCAE are synchronized with each
Mode Amplitude (a.u.) oal D = "2% ] other.

.
(&)
—

O,

Below the natural resonant | /7 g \\ htCAE bursts can become synchronized with kink mode.
frequency, mode - /e O \.

amplitude modulation is no 1.005 = ? Burst frequency capture by the kink can be modeled with
longer 100%; in apparent | \\\\ = a modified predator-prey type model.

- (With noise on stability threshold) . contrast yvith experimental 0-98:
0 - 50 - 100 - observation.

Time' (ms)

[B/Perit

'Frequency' (kHz)
=)
'Frequency' (kHz)
o

(&)
(&)

Frequency capture can happen with as little as a 2%
modulation of the CAE damping rate by the kink.




