

Supported by

Non-inductive Plasma Current Start-up in NSTX using Transient CHI and subsequent Non-inductive Current Ramp-up Scenario in NSTX-U

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U** Marvland **U** Rochester **U** Washington **U Wisconsin**

¹R. Raman, ¹T.R. Jarboe, ²S.C. Jardin, ²C.E. Kessel,
²D. Mueller, ¹B.A. Nelson, ²F. Poli, ²S.P. Gerhardt,
²S.M. Kaye, ²J.E. Menard, ²M. Ono, ³V. Soukhanovskii

¹University of Washington ²Princeton Plasma Physics Laboratory ³Lawrence Livermore National Laboratory *and the NSTX Research Team*

This work is supported by US DOE contract numbers FG03-96ER5436, DE-FG02-99ER54519 and DE-AC02-09CH11466

> 40th EPS Conference on Plasma Physics Helsinki, Finland, July 1-5, 2013

Culham Sci Ctr **U St. Andrews** York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep U Quebec

Office of

Science

Motivation for Coaxial Helicity Injection (CHI) Start-up

- A FNSF based on the Spherical Torus (ST) concept will have very restricted space for a central solenoid
 - A method for solenoid-free start-up is very likely required
- Eliminating the solenoid also simplifies the tokamak concept
 - Solenoid not needed during steady-state operation
 - Provides greater flexibility in the choice of the aspect ratio
- Transient CHI has generated 200kA of high-quality plasma current in NSTX
 - When induction is applied, the current ramped-up to 1MA, while requiring 35% less inductive flux than a discharge without CHI startup

1) Transient CHI Plasma Start-up

- 2) Coupling CHI to inductive current drive in NSTX
- 3) NSTX-U plans on coupling CHI to NBI current drive

NSTX-U Will Use Transient CHI For Solenoid-free Plasma Start-up With Subsequent Current Ramp-up Using NBI

- Parameters to consider
 - Current multiplication factor
 - Effect of toroidal field
 - Magnitude of generated plasma current
 - New desirable features?

Fast camera: F. Scotti, L. Roquemore, R. Maqueda

CHI for an ST: T.R. Jarboe, Fusion Technology, 15 (1989) 7 Transient CHI: R. Raman, T.R. Jarboe, B.A. Nelson, et al., PRL 90, (2003) 075005-1

Imposed-dynamo Current Drive Levies Controlled Fluctuations on Open Field Lines around a Stable Equilibrium

University of Washington

T.R. Jarboe, et al., Nucl. Fusion **52** (2012) 083017 B.S. Victor et al., Phys. Rev. Lett. **107** (2011) 165005

NSTX CHI Research Follows Concept Developed in HIT-II

Concept exploration device HIT-II

- Built for developing CHI
- Many close fitting fast acting PF coils
- 4kV CHI capacitor bank

NSTX plasma is ~30 x plasma volume of HIT-II

Proof-of-Principle NSTX device

- Built with conventional tokamak components
- Few PF coils
- 1.7kV CHI capacitor bank

NSTX

Very High Current Multiplication (Over 70 in NSTX) Aided by Higher Toroidal Flux

-30kA of injector current generates 120kA of plasma current

-Best current multiplication factor is 6-7

-Current multiplication factor in NSTX is 10 times greater than that in HIT-II

- Over 200kA of current persists after CHI is turned off

R. Raman, B.A. Nelson, D. Mueller, et al., PRL 97, (2006) 17002

Externally Produced Toroidal Field makes CHI much more Efficient in a Lower Aspect Ratio Tokamak

- · Current multiplication increases with toroidal field
 - Favorable scaling with machine size
 - Increases efficiency (10 Amps/Joule in NSTX)
 - Smaller injector current to minimize electrode interaction

Plasma Discharge Ramping to 1MA Required 35% Less Inductive Flux when Coaxial Helicity Injection (CHI) is Used

27 kJ of stored capacitor bank energy used for CHI plasma start-up

CHI produced plasma is clean (Discharges have transitioned to H-mode after coupling to induction)

WNSTX

NSTX-U Plans for coupling Transient CHI plasma to Neutral Beam current drive

Non-inductive Ramp-up from ~0.4MA to ~1MA Projected to be Possible with More Tangential 2nd NBI

- More tangential NBI provides 3-4x higher CD at low I_P:
 - 1.5-2x higher current drive efficiency, plus
 - − 2x higher absorption (40 \rightarrow 80%) at low I_P = 0.4MA
- TSC simulation of non-inductive ramp-up from initial CHI target
 - Simulations now being improved to use TRANSP/NUBEAM loop within TSC
 - Experimental challenges:

() NSTX

July 1-5, 2013

Simulations Using TSC, coupled to TRANSP/NUBEAM and GENRAY being used for Current Ramp-up Simulations

TSC (axisymmetric 2D) simulation

- > 2kV CHI voltage (increases flux injection)
- Full Li coverage (reduces low-Z imp.)
- Metal divertor, Cryo pump (increases T_e)

CHI Start-up to ~0.4MA is Projected for NSTX-U, and Projects to ~20% Start-up Current in Next-step STs

Parameters	NSTX	NSTX-U	ST-FNSF
Major Radius [m]	0.86	0.93	1.2
Minor Radius [m]	0.66	0.62	0.80
В _т [Т]	0.55	1.0	2.2
Toroidal Flux [Wb]	2.5	3.9	15.8
Plasma current [MA]	1	2	10
Projected Start-up Current (MA)	0.2	0.4	2.0
Poloidal Flux [Wb]	0.04	0.08	0.53
Injector Flux [Wb]	0.047	0.1	0.66

Injector flux in NSTX-U is ~ 2.5 times higher than in NSTX \rightarrow supports increased CHI current

Bridge Electron Temperature Gap Between CHI Start-up and Current Ramp-up Requirements with ECH Heating

NSTX-U will Develop Full Non-inductive Start-up and Current Ramp-up in support of FNSF and next step Tokamaks

- 0.3MA current generation in NSTX validates capability of CHI for high current generation in a ST (>400 kA projected for NSTX-U)
- Successful coupling of CHI started discharges to inductive ramp-up & transition to an H-mode demonstrates compatibility with high-performance plasma operation
- CHI start-up has produced the type of plasmas required for non-inductive ramp-up and sustainment (low internal inductance, low density)
- Favorable scaling with increasing machine size (from two machines of vastly different size, HIT-II and NSTX and in TSC simulations)
- Initial full discharge simulations (CHI start-up + NBI CD) using TSC provides viable scenarios for current ramp-up to 1MA
- NSTX-U is well equipped with new capabilities to study full non-inductive start-up and current ramp-up

- 2x Higher TF, 1MW ECH, Second Tangential NBI for CD, 2x higher CHI voltage, >2.5x more injector flux, Improved upper divertor coils

Back-up Slide

Preliminary Scenario for Ramping to 1MA in NSTX-U

- Initial CHI target is generated by TSC
 - CHI phase ends at 17ms
 - Horizontal and vertical position control of CHI-started discharge initiated at 20 and 30ms
 - 0.5 MW ECH (absorbed power) maintained for 0.5s to heat CHI target
 - Initial 4 MW HHFW power ramped down to zero by 1.5s
 - H-mode initiated at 500ms
 - τ_E maintained at < 40ms, consistent with NSTX experimental results
 - Bootstrap current overdrive and NB current increases $I_{\rm p}$ to 1 MA at 6s
 - Normalized internal inductance (not shown)maintained below 0.6 during current ramp

