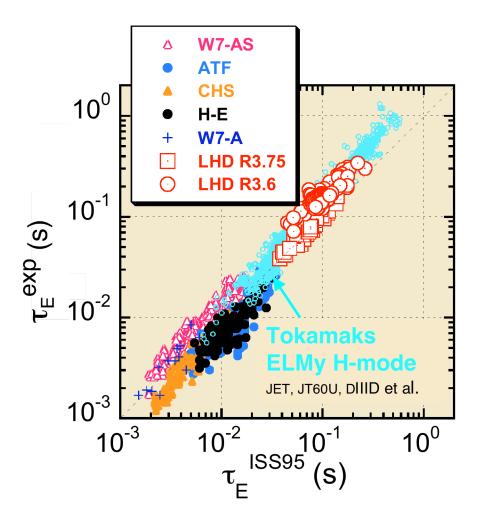
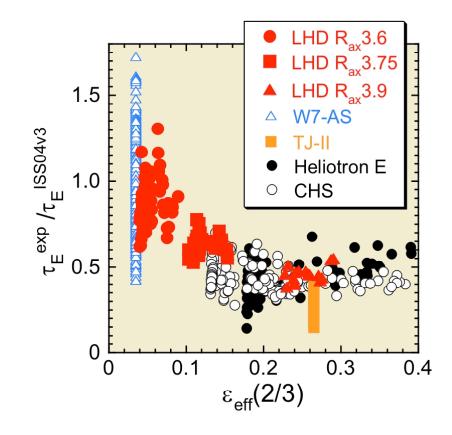
Compact Stellarator Approach to DEMO

J.F. Lyon for the US stellarator community

FESAC Planning Panel Aug. 7, 2007

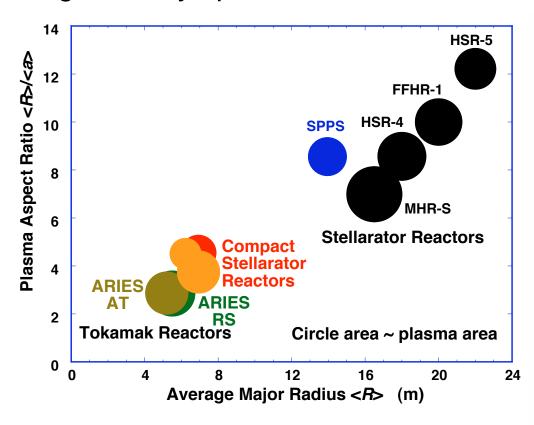
Compact stellarators address DEMO Issues

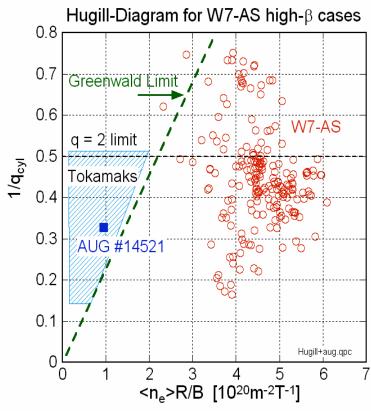

- Compact stellarators ⇒ confinement physics as in tokamaks
- Crucial advantages for steady-state reactors
 - quiescent, steady-state, high-β, disruption-free
 - no power input to sustain current or rotation ⇒ true ignition
 - no profile control or close fitting walls
 - high density limited only by power
 - reduced α slowing-down time \Rightarrow reduced α instability drive
 - less energetic particle fluxes to wall
 - 3-D shaping of plasma edge
 - optimal control of spatial distribution of particle fluxes, radiation losses
- Features shown in high-R/a, non-symmetric stellarators
- Develops important tools for 3-D control of tokamaks
 - ELMs, RWMs, disruptions, plasma-wall interactions


Quasi-symmetry ⇒ key to compact stellarator

- Quasi-symmetry ⇒ minimize variation of IBI in symmetry direction in straight field line coords ⇒ tor., pol or helical
 - conserved canonical momentum as in axisymmetic system
 - ⇒ good orbit confinement
 - reduced effective field ripple along B
 - → reduced neoclassical transport (depends only on IBI)
 - ⇒ allows strong rotation transform at lower R/a
 - reduced viscous damping in symmetry direction
 - \Rightarrow promotes $\lg \mathbf{E} \times \mathbf{B}$ flow shearing \Rightarrow reduced anom. xport
- Exploits physics commonality with tokamaks
- Reduced viscosity, neocl. xport demonstrated in HSX

Stellarator confinement similar to tokamak


- Comparable plasma for same volume, field & power
- Very low effective ripple
 (ε_{eff}) in compact stellarator
 ⇒ enhance confinement ?



ARIES-CS reactors⇒competitive w/ tokamaks

- Costing approach, algorithms as in other ARIES; updated mat'l costs
- CoE comparable to ARIES-AT & ARIES-RS
- Main issues: coil complexity & divertor geometry
- High density operation reduce lpha losses, reduces divertor load

Issues to be addressed before CS DEMO

Physics issues include

- size scaling at a/ρ_i relevant to DEMO
 - \Rightarrow adequate thermal confinement and α confinement
- workable steady-state divertor
- simpler coil design, cheaper construction

How can issues be addressed?

- build on results from ITER, other tokamaks; overseas stellarators;
 and materials & component development programs
- results from US compact stellarator program: NCSX, QPS, HXS,
 CTH
- results from large, next-generation compact stellarator
 - * extend parameters to fill gaps
 - * D-T operation needed . . . or simulate α 's with tail ion heating ?
 - * supercond. coils?, or extrapolate from LHD and W 7-X?
 - * experience constructing large, superconducting stellarators and ITER sufficient to develop reliable cost estimates for a compact stellarator DEMO?

Start now on study of Next Generation Compact Stellarator (NGCS)

- US compact stellarators + foreign stellarators (LHD, W 7-X)
 ⇒ development of NGCS to overlap with ITER
 - integrate burning plasma experience into a compact stellarator configuration better suited for a DEMO
- Study can begin now to
 - assess options for NGCS based on NCSX and QPS physics principles
 3-D plasma theory & simulation
 - explore tradeoffs, sensitivity; costing models
 - optimized configurations with simpler coils, enhanced flows, improved confinement, robust flux surfaces & high β limits
 - integrate full 3-D plasma, RF heating, divertor & boundary physics in assessing NGCS performance