Compact Stellarator Approach to DEMO

J.F. Lyon for the US stellarator community

FESAC Subcommittee Aug. 7, 2007

Compact stellarators address DEMO issues

- Compact stellarators \Rightarrow confinement physics as in tokamaks
- Crucial advantages for steady-state reactors
 - quiescent, steady-state, high- β , disruption-free
 - no power input to sustain current or rotation \Rightarrow true ignition
 - no profile control or close fitting walls
 - high density limited only by power density
 - * reduced α slowing-down time \Rightarrow reduced α instability drive
 - * less energetic particle fluxes to wall
 - 3-D shaping of plasma edge
 - optimal control of distribution of particle fluxes, radiation losses
- Features shown in high-R/a, non-symmetric stellarators
- Develops important tools for 3-D control of tokamaks
 ELMs, RWMs, disruptions, plasma-wall interactions

Quasi-symmetry \Rightarrow key to compact stellarator

- - toroidal, poloidal or helical quasi-symmetry
 - conserved canonical momentum as in axisymmetric system
 - ⇒ good orbit confinement
 - reduced effective field ripple along **B**
 - \Rightarrow reduced neoclassical transport (depends only on |B|)
 - ⇒ allows strong rotational transform at lower R/a
 - reduced viscous damping in the symmetry direction
 - \Rightarrow promotes large **E** x **B** flow shear \Rightarrow reduced anom. xport
- Exploits physics commonality with tokamaks
- Reduced viscosity, neoclass. xport demonstrated in HSX

Quasi-symmetry ⇒ confinement improvement

Quasi-symmetry: small |B| variation in a symmetry direction

 \Rightarrow lower viscosity \Rightarrow lower flow damping in sym. direction

 \Rightarrow large flow shear and breakup of turbulent eddies

Stellarator confinement similar to tokamak

• Comparable plasma for • Very low effective ripple same volume, field & power (ϵ_{eff}) in compact stellarator

ARIES-CS reactors ⇒ competitive with tokamak

- Costing approach, algorithms as in other ARIES; updated mat'l costs
- CoE similar to that for ARIES-AT & ARIES-RS
- Main issues: coil complexity & optimizing divertor geometry
- High density operation reduces α losses, reduces divertor load

Issues to be addressed before CS DEMO

Physics issues include

- size scaling at a/ ρ_i relevant to DEMO
 - \Rightarrow adequate thermal confinement and α confinement
- workable steady-state divertor
- simpler coil design, cheaper construction

• How can issues be addressed?

- build on results from ITER, other tokamaks: overseas stellarators; and materials & component development programs
- results of US compact stellarator program: NCSX, QPS, HSX, CTH
- results from large, next-generation compact stellarator
 - * extend parameters to fill gaps
 - * D-T operation needed . . . or simulate α 's with tail ion heating ?
 - * superconducting vs extrapolation from LHD and W 7-X?
 - * experience constructing superconducting stellarators & ITER sufficient to develop reliable cost estimates for a CS DEMO?

Start now on definition of Next Generation Compact Stellarator (NGCS)

- US compact stellarators + foreign stellarators (LHD, W 7-X)
 ⇒ development of NGCS to overlap with ITER
 - integrate burning plasma experience into a compact stellarator configuration better suited for a DEMO
- Study can begin now to
 - assess options for NGCS based on NCSX and QPS physics principles
 - 3-D plasma theory & simulation
 - explore tradeoffs, sensitivity; costing models
 - optimized configurations with simpler coils, enhanced flows, improved confinement, robust flux surfaces & high β limits
 - integrate full 3-D plasma, RF heating, divertor & boundary physics in assessing NGCS performance

Conclusions

- Compact stellarators offer:
 - tokamak-like confinement physics
 - ignited, sustained plasma operation without external power input
 - passive safety to MHD instabilities, including disruptions
 - reduced energy and controlled distribution of particle flux to walls
 - reactor size & CoE comparable to advanced tokamak
 - 3-D coils vs 50-200 MW of CW current drive + feedback systems
- - compact stellarator = US innovation
 - aimed at convergence with tokamak/ITER program
 - well differentiated from overseas stellarator & tokamak programs
 - coordinated multi-inst. program: exp'ts, theory/comp., engineering
 - explore elements of improved toroidal reactor
 - define performance extension device to overlap with ITER

|B| variation for various stellarators

Rewoldt, Ku, & Tang, PPPL-4082 (2005)