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Compact stellarators address DEMO issues

* Compact stellarators = confinement physics as in tokamaks

* Crucial advantages for steady-state reactors
— quiescent, steady-state, high-f, disruption-free
— no power input to sustain current or rotation = true ignition
— no profile control or close fitting walls
— high density limited only by power density
* reduced a slowing-down time = reduced o instability drive
* less energetic particle fluxes to wall
— 3-D shaping of plasma edge
— optimal control of distribution of particle fluxes, radiation losses
° Features shown in high-R/a, non-symmetric stellarators

* Develops important tools for 3-D control of tokamaks
— ELMs, RWMSs, disruptions, plasma-wall interactions



Quasi-symmetry = key to compact stellarator

° Quasi-symmetry = minimize variation of |B| in symmetry
direction in straight field line coordinates

— toroidal, poloidal or helical quasi-symmetry
— conserved canonical momentum as in axisymmetric system

=> good orbit confinement

— reduced effective field ripple along B
=> reduced neoclassical transport (depends only on |B|)
=> allows strong rotational transform at lower R/a

— reduced viscous damping in the symmetry direction
=> promotes large E x B flow shear = reduced anom. xport

* Exploits physics commonality with tokamaks
* Reduced viscosity, neoclass. xport demonstrated in HSX



Quasi-symmetry = confinement improvement

Quasi-symmetry: small |B| variation in a symmetry direction

Quasi-toroidal symmetry Quasi-poloidal symmetry Quasi-helical symmetry
|B| ~ 1B|(8) NCSX |B| ~ |Bl(¢p) QPS |B| ~ |B|(m8 - np) HSX
Bl at r/a = 0.20 (blue: B < 1T, purpl B > 1T) |B| at r/a = 0.20 (blue: B < 1T, purple: B > 1T) Bl at r/a = 0.20 (blue: B < 1T, purple: B > 1T)
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—> lower viscosity = lower flow damping in sym. direction
= large flow shear and breakup of turbulent eddies



Stellarator confinement similar to tokamak

°* Comparable plasma for * Very low effective ripple
same volume, field & power (e_.) in compact stellarator
= enhance confinement ?
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ARIES-CS reactors = competitive with tokamak

* Costing approach, algorithms as in other ARIES; updated mat’l costs
* CoE similar to that for ARIES-AT & ARIES-RS
* Main issues: coil complexity & optimizing divertor geometry

* High density operation reduces a losses, reduces divertor load
g Huglll Diagram for W7-AS high-§ cases
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Issues to be addressed before CS DEMO

Physics issues include
— size scaling at a/p, relevant to DEMO
— adequate thermal confinement and a confinement

— workable steady-state divertor
— simpler coil design, cheaper construction

How can issues be addressed?
— build on results from ITER, other tokamaks: overseas stellarators;
and materials & component development programs

— results of US compact stellarator program: NCSX, QPS, HSX, CTH
— results from large, next-generation compact stellarator
* extend parameters to fill gaps
* D-T operation needed . . . or simulate o’s with tail ion heating ?
* superconducting vs extrapolation from LHD and W 7-X?
* experience constructing superconducting stellarators & ITER
sufficient to develop reliable cost estimates for a CS DEMO?



Start now on definition of
Next Generation Compact Stellarator (NGCS)

* US compact stellarators + foreign stellarators (LHD, W 7-X)
= development of NGCS to overlap with ITER

— Integrate burning plasma experience into a compact stellarator
configuration better suited for a DEMO

* Study can begin now to
— assess options for NGCS based on
NCSX and QPS physics principles
3-D plasma theory & simulation
— explore tradeoffs, sensitivity; costing models

— optimized configurations with simpler coils, enhanced flows,
improved confinement, robust flux surfaces & high g limits

— integrate full 3-D plasma, RF heating, divertor & boundary
physics in assessing NGCS performance



Conclusions

* Compact stellarators offer:
— tokamak-like confinement physics
— ignited, sustained plasma operation without external power input
— passive safety to MHD instabilities, including disruptions
— reduced energy and controlled distribution of particle flux to walls
— reactor size & CoE comparable to advanced tokamak
— 3-D coils vs 50-200 MW of CW current drive + feedback systems

* DEMO concept evolution = clear opportunity for US leadership
— compact stellarator = US innovation
— aimed at convergence with tokamak/ITER program
— well differentiated from overseas stellarator & tokamak programs
— coordinated multi-inst. program: exp’ts, theory/comp., engineering
— explore elements of improved toroidal reactor
— define performance extension device to overlap with ITER



|B| variation for various stellarators
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