Beyond ITER: RF Heating and Current Drive Issues for DEMO

C. K. Phillips, J. C. Hosea, G. Taylor and J. R. Wilson PPPL

The step from current devices and ITER to DEMO is clearly daunting

	Current devices	ITER	DEMO
Pulse lengths	10's of sec	~1000 sec	~1 year
Neutron flux	low	high	high
Power flux (MW/m)	< 15	~ 24	> 60

Need flexible RF systems for heating, CD, start-up, instability suppression, and profile control

Need to operate reliably in a high power flux, high radiation, and "steady state" nuclear environment

We need an integrated, predictive simulation model for the antenna-edge-core RF interactions

- Existing models unable to predict how much power can be coupled into core from a given launcher
 - Currently lose 10% or more power to edge / vessel
 - Minimal diagnostic support for RF edge interactions in program
- Non-axisymmetric effects may be significant
 - May adversely affect both core and edge wave interactions
 - Limited computational or experimental effort
- Controllable instability suppression with RF under development
 - May need Lower Hybrid for r/a > 0.6 (not currently on ITER)
 - Need feedback control systems and simulation models
- Interactions with fast particles likely to be understood by end of ITER
 - No effort on possible phase-space engineering techniques (alpha channeling, etc)
- It is unclear if RF (or other methods) can be used to control the pressure profile
 - Bootstrap current driven by pressure gradients
 - How much power required in a burning plasma?

Survivability and Feasibility of RF systems in a DEMO is challenging

- Will we have high power RF sources at the right frequencies and reliable feedback control systems for profile control?
- Can we inject adequate power with available ports?
- Will real-time variation (how fast) of the source frequencies or spectrum be required?
 - Can change spectrum for ICRF / LH now but not frequency
 - EC systems change deposition by moving mirrors...but will mirrors survive in a DEMO?
- Various technical questions arise in a high radiation environment:
 - Will voltage breakdown be worse in a radioactive environment?
 - Will different cooling systems be needed, since water is activated by 14 MeV neutrons?
- Can RF systems operate for ~ 1year?
 - ICRF filaments last about this long
 - EC systems do not yet run for extended time periods

Facilities that provide a DEMO-relevant testing environment should be considered

- Existing RF systems are "proof of principle" rather then "demo" level
- It is *not credible* that robust and reliable DEMO-relevant RF systems will be developed with the limited dedicated experimental time, hardware and computational resources, and wave-specific diagnostics currently available or planned in the fusion program
- Current / planned devices will not provide "test bed" for combined high power flux and year-long pulse lengths with high radiation / neutron fluxes [ITER could provide a reasonable "RF" test facility - but this use is not planned]