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•  low β drift wave transport historically assumed electrostatic (δB = 0) 

 When are EM effects important? 

•  low β: predicted to significantly impact transport 
–  favorable for ITER 

•  higher β: fundamentally new EM mechanisms predicted 
–  µtearing (core), kinetic ballooning modes (pedestal)  

in STs, tokamaks, RFPs & stellarators 
–  fast ion driven Global/Compressional Alfvén eigenmodes  

appear to enhance thermal transport in NSTX 
•  Time is ripe for validation of models with EM effects 

–  dramatic advances last decade in code/computation capability for EM effects 
–  comparison of predicted and measured δB is fundamental —  

internal δB diagnostics show promise for validation with focused development 
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Understanding electromagnetic (EM) effects on transport is 
crucial for ITER/FNSF/next generation devices 

C. Holland, NF 2012"

Initiative: enhance & employ internal δB diagnostics to validate models 
with EM effects 

Local GYRO linear growth rates  
(r/a = 0.6) for DIII-D discharges"Nucl. Fusion 52 (2012) 114007 C. Holland et al
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Figure 2. Comparison of electrostatic circles and electromagnetic triangles linear growth rates for modelled β-scan discharges. The
low-rotation results are plotted in (a) and (b), for high and low β respectively, while the corresponding high and low β high rotation results
are plotted in (c) and (d).

0.4
0

4

8

0

4
8

12
1.0

1.5

2.0

2.5
1.0

1.5

2.0

2.5

0.5 0.6
r/a

0.7 0.8

(a)

–30% a/LTi

High β, low Vtor (128398)

(b)

–20% a/LTe

Te

(d)

Qe

Qe/QgB

PB

(c)

Global GYRO

Local
GYRO

Qi/QgB

Ti

Qi
PB

Figure 3. Comparison of measured circles and fitted lines (a) Ti and
(b) Te profiles for the low-rotation, high β discharge (128398).
Global predictions of (c) Qi and (d) Qe normalized to
QgB(r/a = 0.6) (solid lines), and corresponding power balance
calculations (dashed curves). Local GYRO flux predictions are
squares. The results of flux-matching global simulations are
corresponding input Ti and Te profiles are chained dots.

along with corresponding dimensionless parameters such as
Te/Ti and electron–ion collisionality νei. These modified
‘flux-matching’ profiles are also plotted in panels (a) and
(b) figures 3–6, for comparison against the actual profile
measurements, and show that even for the largest changes
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Figure 4. Comparison of measured circles and fitted lines (a) Ti and
(b) Te profiles for the low-rotation, low β discharge (128413).
Global predictions of (c) Qi and (d) Qe normalized to
QgB(r/a = 0.6) (solid lines), and corresponding power balance
calculations (dashed lines). Local GYRO flux predictions are
squares. The results of flux-matching global simulations are
corresponding input Ti and Te profiles are chained dots.

the flux-matching profiles do not differ significantly from
the initial profile fits, or more importantly the point profile
measurements. For the low β, low-rotation case, these
gradient changes lead to ITG-dominated turbulence, rather
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𝛃 = 0.6 %!
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Figure 2. Comparison of electrostatic circles and electromagnetic triangles linear growth rates for modelled β-scan discharges. The
low-rotation results are plotted in (a) and (b), for high and low β respectively, while the corresponding high and low β high rotation results
are plotted in (c) and (d).
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Proposed initiative addresses FES strategic goals 

•  Gap identified in Greenwald-Panel report (2007): 
–  G1: Sufficient understanding of underlying plasma physics to 

predict the performance and optimize design and operation of 
future devices (e.g. FNSF, ITER, DEMO) 

•  Report recommended major initiative to address gap,  
“I-1. Initiative toward predictive modeling and validation”: 
–  Combine advances in simulations with vigorous effort to 

validate with experiments… 
–  “A critical element would be development and deployment of 

new measurement techniques” 
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Internal magnetic fluctuation diagnostics show promise — 
validation possible with increased support for development  

•  Polarimetry – measurement shows  
sensitive to turbulent δB,  

–  broadband fluctuations observable – C-Mod, DIII-D, MST 
–  line-integrated – multi-chord desirable, costs $ 
–  tearing mode particle flux in MST ⇒ develop for turbulence 

•  Cross polarization scattering (CPS) –  
localized δB measurement (k𝜃𝜌s ~ 0.25 – 10) 

–  only localized, k𝜃-resolved δB ⇒ ideal for validation 
–  under development at DIII-D with DOE diagnostic grant  
–  increased support ⇒ accelerated development/ 

implementation (STs & tokamaks)  
–  recent measurements also in MAST (UCLA-CCFE) 

•  Many other potential techniques may advance 
initiative ⇒ support for development/implementation 

–  HIBP, Li-beam, MSE + long history of other methods in literature 
–  In many cases non-turbulence δB already achieved ⇒ development required for turbulence 

•  Initiative facilitated by broad β range in complementary devices  
•  Importance of validation⇒targeted support for development/implementation 
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CPS in DIII-D  
(Rhodes, HTPD 2014)"

Polarimeter fluctuations in C-Mod 
(Bergerson, RSI 2012)!

"
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Dedicated support for synthetic diagnostic/simulation 
integration offers multiple benefits 

•  Synthetic diagnostic models measurement given simulation data 
•  Synthetic diagnostics necessary for comparison of experiment with measurement 

(e.g. synthetic diagnostics integral part of DIII-D experiments to validate GYRO 
code physics model) 

•  Facilitate planning of validation experiments — (e.g. NSTX-U, see below) 
•  Potentially optimize & prioritize diagnostic development through scoping studies 
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GYRO NSTX µtearing simulation"

Radial propagation, 
retroreflection from center stack"

δBr"

Predicted polarizer measurement"
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Importance of EM effects motivates increased support for 
simulation 

•  Existing codes (e.g., GYRO, GEM, GENE) show importance 
of EM effects – inclusion of EM effects challenging 
–  Often require increased resolution, resources 
–  Substantial effort to test resolution, global effects 
–  Often encounter numerical challenges  

•  Routine use for validation experiments would benefit from 
improvements 
–  e.g. more robust numerical algorithms 

•  Importance of EM motivating development of upgraded 
global-EM codes (e.g. GTS, XGC1, GTC, Gkeyll) 
–  Verification important, requires dedicated effort 
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5-10 year goal: establish new/dramatically enhanced internal 
magnetic fluctuations measurements, validate EM physics 

Joint theory/experiment effort: 
•  Coordinate theorists &experimentalists to routinely develop and 

interface synthetic diagnostics with simulations 
–  Promote routine use for design of experiments – experiment time costs $ 
–  Target development of diagnostic capabilities for validation with support 

for diagnostic scoping prior to prototyping/implementation 
•  Optimize diagnostic design to support successful validation 
•  FES could prioritize support for diagnostic development/implementation 

•  Expand ongoing experimental validation of simulations with data 
–  Requires support for increased effort running full EM simulations 

Experiment effort: 
•  Implement/develop proven/novel diagnostic(s) at appropriate 

facility(ies) 
Theory effort: 
•  Expand testing/improving existing codes & developing new codes 

with EM effects 
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10 year goal: establish new/dramatically enhanced internal 
magnetic fluctuations measurements, validate EM physics 

Deliverables 

•  Significant advances in internal δB measurement capability 

•  Significantly advance understanding of EM effects in transport 
–  EM effects on “electrostatic” turbulence at finite β 
–  Effects of fundamentally EM phenomena – µtearing, Alfvén eigenmodes, … 

•  Sufficient understanding of EM effects on transport to optimize 
performance of finite β future device (FNSF, ITER, DEMO, …) 

•  World leadership in diagnosing, simulating and validating EM physics 
in turbulence & transport for burning plasma research 
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Budget estimate 

Total cost of increased effort (i.e. beyond existing effort):  
4½ M $/year 
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Activity Yearly Cost 
Diagnostic Development/Implementation 2 M $   
Validation experiments 
& Running EM GK simulations 

1 M $ 

Integration of synthetic diagnostics with 
simulation 

½ M $ 

EM simulation + model development 1 M $ 
Total 4½ M $ 
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Summary 

•  Initiative promotes US World leadership in diagnosing, 
simulating and validating EM physics in turbulence & 
transport for burning plasma research — ITER, FNSF, 
DEMO… 

•  Understanding of EM effects on transport will improve 
predictive capability, helping optimize β for future devices 
(FNSF, ITER, DEMO …) 

•  Improved magnetic diagnostics offer benefits in other areas: 
–  e.g. MHD physics, disruption precursor detection 
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Backup Slides 
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Understanding electromagnetic (EM) effects on transport is 
crucial for ITER/FNSF/next generation devices 

•  At lower beta (larger aspect 
ratio), increasing beta can be 
favorable for core performance 

–  Finite β provides stabilizing effect to 
traditional electrostatic drift waves,  
favorable for ITER predictions 
(Kinsey, NF 2011) 

–  Stabilizing effect is stronger in 
presence of fast ions (Holland, NF 
2012; Citrin, PRL 2013) → important 
for burning plasmas 
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A~3!
Lower β	



A~1.5!
Higher β	



•  At higher beta (lower aspect ratio), 
limits of further increasing beta are 
unclear 

–  New classes of EM drift waves predicted 
(Applegate, PoP 2004; Wong, PRL 2007) 

–  Global/Compressional Alfven 
eigenmodes appear to enhance electron 
thermal transport in NSTX (Stutman, PRL 
2009; Gorelenkov, NF 2010) 

–  Discrepancies in multi-machine confinement 
scaling with beta, collisionality (Petty, PoP 
2007) → influences extrapolations for 
CTF/FNSF (Valovic, NF 2010; Menard, NF 
2012) 

Optimal FNSF performance!
A=? β=?!
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Electromagnetic effects are emerging as increasingly 
important for many toroidal devices, from core to pedestal 

•  “Microtearing” drift waves (fundamentallly EM, unique from electrostatic 
mechanisms) predicted both in core and near pedestal top of: 

–  Spherical tokamaks: NSTX (Wong, 2007; Guttenfelder 2011/12), MAST (Applegate, 2007; 
Dickinson, 2012) 

–  Tokamaks: AUG (Vermare, 2007), DIII-D (Petty, IAEA 2012), JET (Sareelma IAEA 2012; Moradi, NF 
2013), ITER (Wong, APS 2010) 

–  Stellarators: LHD (Ishizawa PoP 2014) 
–  RFPs: MST (Carmody, PoP 2013); RFX (Predebon, PRL 201) 

•  EM mechanisms (peeling-ballooning + KBM drift wave) appear to set constraint for 
H-mode pedestal (Snyder, NF 200) 

•  EM effects likely important for ELM dynamics (Wilson/Cowley? Xu) 
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•  Measurements & theory/computation tools are insufficient to broadly measure, 
predict & validate these effects, lags understanding of electrostatic transport 

1.  Challenging to measure microscopic internal magnetic fluctuations (localization; smaller amplitude), 
although promising base of work already exists (next slides) 

2.  Numerical simulations challenged by resolution, global effects, typically requires more resources 

•  With investment, US could become world leader in validating EM transport effects, 
for STs and tokamaks 
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Internal δB Diagnostics 
Soltwisch, Diagnostics Workshop, Madrid, 1992 



FESAC Strategic Planning Panel (7/2014)!

Fine-scale Gaps 

•  4.b.3 – Predictive modeling 
–  Gap: Verification 
–  Gap: Validation 
–  Gap: Turbulence & transport 
–  Gap: Plasma edge turbulence 
–  Mission elements: 

•  Improved diagnostics for validation of theory/simulation 
•  Enhancements to basic theory for models 
•  Improvements in numerical models and algorithms 
•  Computing facilities (ASCR 
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•  New UCLA polarimetry system 
 (J. Zhang, PP9.71) 

•  Simulations suggest (δB/B)internal ≤0.1% may 
be detectable (1-20 or ~0.30 rms mixer phase) 

Polarimetry for magnetic field fluctuations 
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δBr (Gauss)"BT0=3.5 kG"

polarimeter"

Radial propagation, 
retroreflection from center stack!

~2 ms"
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Collaborating with C-Mod to investigate electromagnetic 
effects & diagnostics related to NSTX-U 

•  Broadband fluctuations 
observed in C-Mod line-
integrated polarimeter 
(~ne⋅B), not seen in PCI 
(~ne only) (Bergerson, 
RSI 2012) 

•  Collaborating on 
gyrokinetic analysis and 
measurement 
interpretation in 
anticipation of related 
NSTX-U research 
–  Experimental run time 

allocated for FY14 to 
investigate βN~2 ITER-
like scenarios, hopefully 
with new polarimeter data 

Ch. 2!
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Recent internal magnetic fluctuation measurements show 
promise for use in EM validation studies 

•  Polarimetry – line-integrated but sensitive to many features 
–  MST (e.g. Brower, RSI 2001; Ding PRL 2013), pioneering work in the RFP 
–  Recent measurements in tokamaks indicate magnetic fluctuations observable 
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Broadband polarimeter fluctuations in C-Mod, 
not observed in PCI density fluctuations"
Bergerson, RSI (2012)"
Full capabilities not realized due to 2012 
funding cuts!

Broadband polarimeter fluctuations in!
DIII-D from runaway electrons"
Zhang, RSI 2012; Paz-Soldan, PoP (2014)"
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Recent internal magnetic fluctuation measurements show 
promise for use in EM validation studies 

•  Polarimetry – line-integrated but sensitive to many features 
–  MST (e.g. Brower, RSI 2001; Ding PRL 2013), pioneering work in the RFP 
–  Recent measurements in tokamaks indicate magnetic fluctuations observable 
–  Very limited progress in validation of first principles EM simulations 

•  Cross polarization scattering (CPS) – localized measurement 
–  Following earlier work, e.g. on Tore Supra (Zou, PRL 1995) 
–  Distinct behavior observed in CPS (~δB) compared to Doppler backscattering 

(DBS, ~δn), in both MAST and DIII-D 

19 

CPS!

DBS!

DIII-D, Rhodes, HTPD (2014)!

MAST, Hillesheim (2014)!


