

Investigation of ELM evolution patterns on NSTX-U with beam emission spectroscopy measurements

NSTX-U

WISCONSIN 🚺

David R. Smith¹, G. McKee¹, R. Fonck¹, A. Diallo², S. Kaye², B. LeBlanc², S. Sabbagh³, and B. Stratton² ¹U. Wisconsin-Madison, ²PPPL, ³Columbia U.

> 21st Topical Conf. on High-Temperature Plasma Diagnostics Madison, WI June 5-9, 2016

Nonlinear ELM dynamics and measurement capabilities

- Edge localized modes (ELMs) are peeling-ballooning instabilities in the edge/pedestal region driven by pressure and current gradients
 - Unmitigated ELMs pose risk for ITER
- Nonlinear mechanisms impact ELM dynamics
 - Broadly: NL mode coupling, saturation mechanisms, filament dynamics
 - Hyper-resistivity is key for realistic ELM radial penetration (X. Xu et al, PRL, 2010)
 - Growth of sub-dominant linear modes in the NL phase (M. Holzl et al, PoP, 2012)
 - Reverse shear stabilization of low-n modes (P. Zhu et al, PoP, 2012)
 - EHOs attributed to saturated PB modes (K. Burrell et al, PRL, 2009)
- Common ELM analysis tools/methods do not capture the nonlinear, Alfven-scale evolution dynamics
 - Heuristic classification schemes (Type I, III, etc.)
 - Sub-Alfvenic measurements with Thomson scattering and filterscopes
 - Peeling-ballooning/KBM linear stability threshold
- 2D BES measurements on NSTX-U and DIII-D can capture the Alfvenscale evolution of ELM events

ELM evolution patterns on NSTX/NSTX-U

- Beam emission spectroscopy (BES) system on NSTX/ NSTX-U
- Identification of ELM evolution patterns with machine learning analysis on NSTX
 - Time-series similarity metrics
 - Hierarchical and k-means cluster analysis
 - Parameter regimes for identified evolution patterns and plans for nonlinear ELM simulations
- 2D measurements of ELM events from NSTX-U

ELM evolution patterns on NSTX/NSTX-U

- Beam emission spectroscopy (BES) system on NSTX/ NSTX-U
- Identification of ELM evolution patterns with machine learning analysis on NSTX
 - Time-series similarity metrics
 - Hierarchical and k-means cluster analysis
 - Parameter regimes for identified evolution patterns and plans for nonlinear ELM simulations
- 2D measurements of ELM events from NSTX-U

Beam emission spectroscopy (BES) measures Doppler-shifted D_{α} emission from a deuterium heating beam

Radial and poloidal coverage on NSTX

D. Smith et al, RSI 81, 10D717 (2010)
N. Schoenbeck et al, RSI 81, 10D718 (2010)
D. Smith et al, RSI 83, 10D502 (2012)

Upgraded 2D coverage on NSTX-U

Low-noise, high quantum efficiency detection system

ELM evolution patterns on NSTX/NSTX-U

- Beam emission spectroscopy (BES) system on NSTX/ NSTX-U
- Identification of ELM evolution patterns with machine learning analysis on NSTX
 - Time-series similarity metrics
 - Hierarchical and k-means cluster analysis
 - Parameter regimes for identified evolution patterns and plans for nonlinear ELM simulations
- 2D measurements of ELM events from NSTX-U

BES measurements with sub-µs time resolution capture the Alfven-scale evolution and radial profile of ELM events

Goal – Identify common evolution patterns (if any) in ELM time-series data

WISCONSIN

NSTX-U

- Database of 51 ELM events measured with BES
 - 8 radial BES channels spanning pedestal region
 - 34 NSTX discharges from 8 run days spanning 4 months
 - -1%-16% stored energy loss and observable pedestal collapse
 - Most likely type I ELMs

Examples from the ELM database

Method – Apply unsupervised machine learning techniques and timeseries similarity metrics to identify common evolution patterns

High Signature Score Hierarchical clustering Interm. Signature Score Low Signature Score Popularized in genomics **OVARIAN** Produces a multi-level hierarchy of similar objects SCC Requires an **intrinsic similarity metric** to Interferon-related B/T Lymph. cell related quantify similarity among time-series Stromal/fibroblast-related Time-series similarity metrics **329 Gene Signatures** Time-lag cross-correlation ER+/Luminal-related **Euclidean distance** PTEN high-related / TP53WT Dynamic time warping (DTW) Claudin-related Wavelet decomposition RNA processing-related K-means clustering Transcription-related Stem Cell-related Groups similar objects into k mutually Myofibrin/Muscle-related exclusive clusters Mytochondria/oxidative-related Requires an **extrinsic similar metric** to quantify similarity among time-series Proliferation-related Optimum cluster number found by trialand-error Embryonic Stem Cell-related

Prat et al, Scientific Reports 3, 3544 (2013)

Hierarchical clustering (I) – Assemble pair-wise similarity metrics into a dissimilarity matrix

 Time-lag cross-correlation can quantify the similarity of ELM events 2) Assemble pair-wise metrics into a dissimilarity matrix

Larger max correlation \rightarrow more similar

Hierarchical clustering (II) – Apply clustering algorithm to dissimilarity matrix to identify groups of similar ELMs

WISCONSIN 🚺

NSTX-U

D. Smith et al, PPCF 58, 045003 (2016)

The identified ELM groups show similar evolution characteristics

Now try other similarity metrics

For instance, dynamic time warping (DTW) yields cluster results similar to time-lag correlation

Similar ELM groups from different metrics suggests that the ELM groups are robust results

K-means clustering (I) – Group objects into mutually exclusive groups

- Requires extrinsic similarity metrics
 - Designate benchmark ELMs to serve as extrinsic metrics
- Visualize results in low-dimensional space from PCA

*Out-of-cluster/in-cluster distance ratio

D. Smith et al, PPCF 58, 045003 (2016)

K-means clustering (II) – Different sets of benchmark ELMs yield similar results

# of benchmark ELMs	Optimal cluster #	Mean ratio	
6	4	0.52	
9	4	0.52	
11	4	0.53	
14	4	0.52	

- Clusters are highly consistent for calculations with different benchmark ELMs
- Red cluster ELMs: 2, 35, 23, 19, 22, 12, 28, 14, 51, 24
- Blue cluster ELMs: 13, 15, 10, 39, 41, 40, 38, 17, 27, 18
- Green cluster ELMs: 30, 4, 50, 3, 5, 36, 29, 9, 8, 46

WISCONSIN 🚺

NSTX-U

k-means clustering and hierarchical clustering yield consistent results

- Red, Blue, and Green groups in k-means results are largely consistent with previous hierarchical cluster results
- The Cyan group in k-means corresponds to poorly linked ELMs in the hierarchical cluster

ELMs with similar evolution characteristics

This analysis demonstrates that machine learning techniques can identify patterns and similarities in time-series data

ELM evolution patterns on NSTX/NSTX-U

- Beam emission spectroscopy (BES) system on NSTX/ NSTX-U
- Identification of ELM evolution patterns with machine learning analysis on NSTX
 - Time-series similarity metrics
 - Hierarchical and k-means cluster analysis
 - Parameter regimes for identified evolution patterns and plans for nonlinear ELM simulations
- 2D measurements of ELM events from NSTX-U

Identified ELM groups exhibit similar stored energy losses

Stored energy loss can't differentiate the identified ELM groups

D. Smith et al, PPCF 58, 045003 (2016)

Identified ELM groups correlate with distinct parameter regimes (I)

- Red and Blue ELM groups exhibit similar parameter regimes
- Observed evolution patterns and associated parameter regimes suggest genuine variations in underlying nonlinear dynamics

Higher triangularity is stabilizing for PB modes (Snyder, PPCF, 2004)

At higher Ip, most unstable mode shifts to lower n (Liu, PoP, 2014) Higher Ip is stabilizing for PB (Snyder, PPCF, 2004)

WISCONSIN WISCONSIN-MADISON

Identified ELM groups correlate with distinct parameter regimes (II)

Pedestal density parameters appear to differentiate the ELM groups

The pressure gradient does not appear to differentiate the ELM groups

Nonlinear ELM simulations provide time evolution and 3D perturbations

ELM evolution patterns on NSTX/NSTX-U

- Beam emission spectroscopy (BES) system on NSTX/ NSTX-U
- Identification of ELM evolution patterns with machine learning analysis on NSTX
 - Time-series similarity metrics

WISCONSIN (I) NSTX-U

- Hierarchical and k-means cluster analysis
- Parameter regimes for identified evolution patterns and plans for nonlinear ELM simulations
- 2D measurements of ELM events from NSTX-U

2D BES measurement of ELM event on NSTX-U

Summary

- BES measurements with Alfvenic time resolution capture the nonlinear evolution of ELM events on NSTX
- Unsupervised machine learning algorithms identified groups of ELMs with similar evolution characteristics
 - The identified ELM groups correlate with parameter regimes relevant to ELM physics
 - Ip, q-95, δ , dR_{sep}, n_{e,ped}, Δ R_{n,ped}
 - Working towards NL simulations to clarify the mechanisms at play in the identified ELM groups
- 2D BES measurements are now available on NSTX-U
- Machine learning techniques can leverage large data archives for pattern recognition, relationship discovery, and automated classification

Backup

Point spread function calculations indicate NB excited state lifetimes and fieldline trajectory blur the $1/e^2$ spot size by 10%

	Fiber bundle	Optical Image	Opt + D* Lifetime	Opt + NB int.	Opt + B Misalign.	All Effects
Rad. 1/e ² width (cm)	3.2	4.0	4.4	3.2	4.4	4.4
Rad. displ. (cm)	0	0	0.5	0	-0.5	0.3

Machine learning techniques can boost the scientific impact of large data archives

- Many data-rich scientific fields successfully leverage machine learning techniques
 - Unsupervised pattern recognition, relationship discovery in complex datasets, automated data classification
 - Cancer genomics, exo-planet detection, seismic wave classification, seizure onset prediction
 - ML techniques excel when the quantity of data exceeds the capacity for human inspection
- NSTX/NSTX-U data archive
 - About 40 TB of data obtained with R&D investment approaching \$1B
 - ML tools can leverage large data archive with automated, wholearchive analysis

