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There are many possible pathways 
 from ITER to commercial fusion power plant 

FNSF = Fusion Nuclear Science Facility 

CTF = Component Test Facility 

ITER First of a kind 

Power Plant 

Supporting Physics 

and Technology 
 

• Core Physics 

• Materials R&D 

• Plasma Material Interface 
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Pilot Plant 
FNSF/CTF with power-plant like 

maintenance, Qeng ≥ 1 

 

Qeng = 3-5 
e.g. EU Demo 

FNSF/CTF 
Blanket R&D, T self-sufficiency 
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This talk focuses on possible spherical tokamak 
(ST) contributions ranging from FNSF to Pilot Plant 

FNSF = Fusion Nuclear Science Facility 

CTF = Component Test Facility 

ITER First of a kind 

Power Plant 

Supporting Physics 

and Technology 
 

• Core Physics 

• Materials R&D 

• Plasma Material Interface 
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Pilot Plant 
FNSF/CTF with power-plant like 

maintenance, Qeng ≥ 1 

 

Qeng = 3-5 
e.g. EU Demo 

FNSF/CTF 
Blanket R&D, T self-sufficiency 
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Successful operation of upgraded STs (NSTX-U/MAST-U) 

could provide basis for design, operation of ST-based FNSF 

• Fusion Nuclear Science Facility (FNSF) mission: 

– Provide continuous fusion neutron source to develop knowledge-base for 

materials and components, tritium fuel cycle, power extraction 
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• FNSF  CTF would complement ITER path to DEMO 

 

• Studying wide range of ST-FNSF configurations to identify 
advantageous features, incorporate into improved ST design 

M. Peng et al., IEEE/NPSS Paper S04A-2 - 24th SOFE Conf. (2011) 

M. Abdou et al. Fus. Technol. 29 (1996) 1 

• Investigating performance vs. device size 
– Require: Wneutron ≥ 1 MW/m2, test area ≥ 10 m2, volume ≥ 5 m3 
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NSTX-U will access next factor of 2 increase in performance 

to reduce extrapolation to ST-based FNSF/CTF/Pilot 

• Achievable confinement  
• Non-inductive ramp-up and sustainment 
• Divertor solutions for mitigating high heat flux 
• Radiation-tolerant magnets 

 

* Includes 4MW of high-harmonic fast-wave (HHFW) heating power 

 

Key issues to  

resolve for FNSF 

Parameter NSTX 
NSTX 

Upgrade 
Fusion Nuclear 
Science Facility 

Pilot Plant 

Major Radius R0 [m] 0.86 0.94 1.3 1.6 – 2.2 

Aspect Ratio R0 / a  1.3  1.5  1.5  1.7 

Plasma Current [MA] 1 2 4 – 10 11 – 18 

Toroidal Field [T] 0.5 1 2 – 3 2.4 – 3 

Auxiliary Power [MW] ≤ 8 ≤ 19* 22 – 45 50 – 85 

P/R [MW/m] 10 20 30 – 60 70 – 90 

P/S [MW/m2] 0.2 0.4 0.6 – 1.2 0.7 – 0.9 

Fusion Gain Q 1 – 2 2 – 10 
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ST-FNSF operating point of A=1.7, li = 0.5, and k=3  

chosen to be at/near values anticipated for NSTX-U 

• Most probable NSTX thermal 
pressure peaking factor ~1.8 
– If similar in NSTX-U/FNSF  full 

non-inductive li ~ 0.5 (BS + NBI) 
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• NSTX A=1.7, li = 0.5 plasmas can 

operate stably at k ~ 2.8 

– Expect to improve n=0 control in NSTX-U 

 anticipate k~3 possible in NSTX-U/FNSF 
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ST-FNSF operating point of fGreenwald = 0.8, H98y,2=1.2  

chosen to be at/near values anticipated for NSTX-U 

• H98y,2 ~ 1.2 has been accessed for 

a range of Greenwald fractions 

– However, much more research needs to 

be carried out in NSTX-U to determine if 

HH=1.2 can be achieved reliably 
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• Also need to assess feasibility 

of routine access to H98y,2 ~ 1.2 

at k~3 in NSTX-U 
 

• Note: there is sufficient shaping 

margin to reduce k to 2.7-2.9 for 

FNS mission, but H98y,2 ~ 1 would 

require much higher Paux (~1.8×) 
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NSTX disruptivity data informs FNSF  

operating point with respect to global stability 

• Increased disruptivity for q* < 2.7 

– Significantly increased for q* < 2.5 

• Lower disruptivity for bN  = 4-6 

compared to lower bN 

– Higher bN increases fBS, broadens J 

profile, elevates qmin 

– Operation above no-wall limit aided by: 

• NBI co-rotation 

• Close-fitting conducting wall 

• Active error-field and RWM control 

• Strong shaping also important 

– S  q95 IP/aBT 

– S > 30 provides strongest stabilization 

– S > 22-25 good stability 

– S < 22 unfavorable 
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Gerhardt  

IAEA FEC EX/9-3 
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Increased device size provides modest increase in stability, 

but significantly increases tritium consumption 

• Scan R = 1m  2.2m (smallest FNSF  pilot plant with Qeng ~ 1) 

• Fixed average neutron wall loading = 1MW/m2 

• BT = 3T, A=1.7, k=3, H98 = 1.2, fGreenwald = 0.8 

• 100% non-inductive: fBS = 75-85% + NNBI-CD (ENBI=0.5MeV JT60-SA design) 
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• Larger R lowers bT & bN, increases q* 
 

• Comparable/higher bT and bN 

values already sustained in NSTX 
 

• Q = 1  3, Pfusion = 60MW  300MW 
 5× increase in T consumption 
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In addition to neutron wall loading and tritium breeding,  

FNSF study also tracking overall electrical efficiency: Qeng 

controlcoilssubpump

aux

aux

pumpauxnnth

eng

PPPP
P

PPPPMxxxxxxxxxxxxxxxx
Q








  )(

th    =  thermal conversion efficiency 

aux  =  injected power wall plug efficiency 

Q =  fusion power / auxiliary power 
 

Mn    =  neutron energy multiplier 

Pn   = neutron power from fusion 

P     =  alpha power from fusion 

Paux   =  injected power (heat + CD + control) 

Ppump  =  coolant pumping power 

Psub   =  subsystems power 

Pcoils   =  power lost in coils (Cu) 

Pcontrol  =  power used in plasma or plant control 

      that is not included in Pinj 

Pextra  =  Ppump + Psub + Pcoils + Pcontrol 

)/1(5

)/5/514(

fusextraaux

fuspumpnauxth

eng
PQP

PPQMQ
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Note: blanket  and auxiliary heating 
and current-drive efficiency + fusion 
gain largely determine Qeng 
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Electricity produced     

Electricity consumed 

FNSF assumptions (from Pilot study): 
• Mn = 1.1 
• Ppump = 0.03×Pth 
• Psub + Pcontrol = 0.04×Pth 
•  aux = 0.4 (presently unrealistically high) 
•  CD = ICDR0ne/PCD = 0.3 × 1020A/Wm2 

 

 

 

For more details see J. Menard, et al., Nucl. Fusion 51 (2011) 103014 
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High performance scenarios can access increased neutron 

wall loading and engineering gain > 1 for sufficiently large R 

• Decrease BT = 3T  2.6T, increase H98 = 1.2  1.5 

• Fix bN = 6, bT = 35%, q* = 2.5, fGreenwald varies: 0.66 to 0.47 

 

•Size scan:  Q increases from 3 (R=1m) to 14 (R=2.2m) 

•Average neutron wall loading increases from 1.8 to 3 MW/m2  (not shown) 

•Smallest ST for Qeng ~ 1 is R=1.6m  requires very efficient blankets 
14 

Note:  Outboard PF coils 

are superconducting 

Qeng  
Pelectric produced 

Pelectric consumed 
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Cost of tritium and need to demonstrate T self-sufficiency 

motivate analysis of tritium breeding ratio (TBR) 

• Example costs of T w/o breeding at $0.1B/kg for R=1  1.6m 
– FNS mission: 1MWy/m2   $0.33B  $0.9B 

– Component testing: 6MWy/m2  $2B  $5.4B 

• Implications: 
– TBR << 1 likely affordable for FNS mission with R ~ 1m 

– Component testing arguably requires TBR approaching 1 for all R 
 

• Performing initial analysis of R=1.6m FNSF using conformal 
and straight blankets, ARIES-ST neutron source profiles: 
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Neutron Source 

63% 

32% 

5% 
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R=1.6m TBR calculations highlight importance of  

shells, penetrations, and top/bottom blankets 

Extended 

conformal blanket 

TBR = 1.1 

Conformal blanket 

TBR = 1.046 

TBR = 1.02 
10 NBI penetrations 

NBI penetration at midplane 

TBR = 1.07 

Stabilizing 

shell  

+ 3cm thick 

stabilizing shell 

 

Straight blanket  

TBR = 0.8  

Extended  

straight blanket 

TBR = 1.0  TBR = 1.047  

Straight blanket 

with flat top  

Extended conformal + 3cm shell + NBI 

17 
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FNSF center-stack can build upon NSTX-U design  

and is incorporating NSTX stability results 

•Like NSTX-U, use TF wedge segments (but brazed/pressed-fit together) 

– Coolant paths: gun-drilled holes or NSTX-U-like grooves in wedge + welded tube 

•Bitter-plate divertor PF magnets in ends of TF enable high triangularity 

– NSTX data:  High d > 0.55 and shaping S  q95IP/aBT > 25 minimizes disruptivity 

– Neutronics:  MgO insulation can withstand lifetime (6 FPY) radiation dose 
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Glidcop 

plates  

Insulator  

Bitter coil insert for divertor coils in ends of TF 
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Neutronics analysis indicates organic  

insulator for divertor PF coils unacceptable 
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MgO insulation appears to have good  

radiation resistance for divertor PF coils 

• UW analysis of divertor PFs 

– 1.8x1012 rad = 1.8x1010 Gy at 

6FPY for Pfus = 160MW 

• Pilot mission for R=1.6m: 

– Pfus = 420MW vs. 160MW  

2.6x higher  4.7x1010 Gy 

– Even for Pilot mission, dose is 

< limit of 1011 Gy 

• Limiting factor may be Cu 

• Need to analyze CS lifetime 

• Revisit option for multi-turn 

TF and small OH solenoid 
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Divertor PF coil configurations identified to achieve  

high d while maintaining peak divertor heat flux < 10MW/m2  
 

 

• Flux expansion = 15-25, dx ~ 0.55 

• 1/sin(qplate) = 2-3 

• Detachment, pumping questionable 
– Future: assess long-leg, V-shape divertor (JA) 
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• Flux expansion = 40-60, dx ~ 0.62 

• 1/sin(qplate) = 1-1.5 

• Good detachment (NSTX data) and 
cryo-pumping (NSTX-U modeling) 

Snowflake 

Field-line angle  
of incidence at  
strike-point = 1˚ 

 Jaworski  - IAEA FEC EX/P5-31 

• Will also test liquid metal PFCs in NSTX-U for power-handling, surface replenishment 

Conventional 
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Parameters and profiles for conventional divertor  
(using simple exponential heat-flux profile in R=1.6m ST-FNSF) 

• Pheat = 115MW, frad=0.8, fobd=0.8, sin(qpol) = 0.39 

• Rstrike = 1.16m, fexp = 22, lq-mid =2.7mm, Ndiv = 2 
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Pheat (1-frad) fobd sin(qpol)  

2pRstrike fexp lq-mid Ndiv 

Peak q-div  

NSTX-U simulations find q at pump entrance 

should be ≥ 1-2MW/m2  for efficient pumping  

guesstimate Rentrance ~ 1.3m for R=1.6m ST-FNSF 

 

Strike point radius 
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Parameters and profiles for snowflake divertor  
(using simple exponential heat-flux profile in R=1.6m ST-FNSF) 

• Pheat = 115MW, frad=0.8, fobd=0.8, sin(qpol) = 0.87 

• Rstrike = 1.05m, fexp = 50, lq-mid =2.7mm, Ndiv = 2 
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Pheat (1-frad) fobd sin(qpol)  

2pRstrike fexp lq-mid Ndiv 

Peak q-div  

 

Strike point radius 

Snowflake would also want divertor cryo-plenum 

entrance radius Rentrance ~ 1.3m for R=1.6m ST-FNSF 
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Flexible and efficient in-vessel access important for testing,  

replacing, improving components, maximizing availability 

• Vertically remove entire blanket 
and/or center-stack 
– Better for full blanket replacement? 

 

 

• Translate blanket segments 
radially then vertically 
– Better for more frequent blanket 

module replacement and/or repair? 

28 

 

• May be possible to combine features of both approaches 

Several maintenance approaches under consideration: 

Radial ports  
for divertor  
maintenance 
or pumping 
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Assembly and maintenance schemes  

with snowflake divertor and vertical ports 

Full Blanket Assembly Removed Centerstack Assembly Removed 
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Possible divertor module maintenance scheme using radial 

installation and vertical translation through vertical ports 
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Large cylindrical vessel of R=1.6m FNSF could be used for 

PMI R&D (hot walls, Super-X?), other blanket configurations 

Straight blanket  

TBR = 0.8  

TBR = 1.047  

Straight blanket 

with flat top  

NOTE: TBR values do 
not include stabilizing 
shells or penetrations 
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Summary 

• Present STs (NSTX/MAST) providing preliminary physics 

basis for ST-FNSF performance studies 

– Upgraded devices will provide more extensive and definitive basis 
 

• Neutron wall loading of 1MW/m2 feasible for range of major 

radii for b and H98 values at/near values already achieved 

– High wall loading and/or pilot-level performance require bN ~ 6 and H98 

~ 1.5 which are at/near maximum values attained in present STs 
 

• TBR ~ 1 possible if top/bottom neutron losses are minimized 

• Divertor PF coils in ends of TF bundle enable high d, shaping 

• Conventional and snowflake divertors investigated, PF coils  

incorporated to reduce peak heat flux < 10MW/m2 

• Vertical maintenance strategies for either full and/or toroidally 

segmented blankets being investigated 

32 



ST-FNSF Development Studies – IAEA Demo Workshop  (J. Menard, October 2012) 

Future work 
(a highly incomplete list!) 

• Physics basis for operating points 
– Perform sensitivity study of achievable performance vs. baseline configuration 

assumptions: A, k, H98y,2, ST vs. tokamak tE scaling 

– TRANSP calculations of NBI heating, current drive, neutron production 

• Performance vs. device size 
– Could/should overall machine configuration change at smaller R? 

– Example questions: could/should vessel take more load?, is there sufficient 
shielding for divertor PF coils at smaller R?   

• Tritium breeding ratio calculations 
– Extend calculations to smaller R, include 3D effects and final machine layout 

• Divertor poloidal field coil layout and design 
– Assess radiation induced conductivity (RIC) in ceramic insulators 

• Power exhaust calculations 
– Perform pumping and detachment calculations, include Super-X divertor 

• Maintenance strategies 
– Assess space/lifting requirements above machine for vertical maintenance 

33 



ST-FNSF Development Studies – IAEA Demo Workshop  (J. Menard, October 2012) 

Backup 
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R=1.6 m ST FNSF with JT-60SA NNBI system  
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