

Divertor heat flux reduction and detachment in NSTX

V. A. Soukhanovskii¹, R. Maingi², R. Raman³, C. E. Bush², R. E. Bell⁴, R. Kaita⁴, H. W. Kugel⁴, C. J. Lasnier¹, B. P. LeBlanc⁴, J. Menard⁴, S. F. Paul⁴, A. L. Roquemore⁴, and the NSTX Team

> ¹ Lawrence Livermore National Laboratory, Livermore, CA ² Oak Ridge National Laboratory, Oak Ridge, TN ³ University of Washington, Seattle, WA ⁴ Princeton Plasma Physics Laboratory, Princeton, NJ

Poster EX-P4-28

21st IAEA Fusion Energy Conference

Chengdu, China, 16-21 October 2006

Abstract

Abstract: We report the first successful experiments at achieving significant divertor outer strike point (OSP) peak heat flux reduction in H-mode plasmas with high auxiliary heating in a large spherical torus NSTX. Two approaches have been investigated in 1-6 MW NBI-heated L- and H-mode plasmas with elongation 1.8-2.4 and triangularity 0.45-0.75. One approach - a naturally obtained high poloidal flux expansion of up to 25 at the OSP in a strongly shaped configuration (high elongation and triangularity) - led to a moderate peak heat flux of 2-4 MW/m² in extended pulse small ELM H-mode plasmas. Another approach - a dissipative divertor scenario with D₂ puffing - was employed for plasma shapes with low elongation and triangularity where typical reference OSP steady-state peak heat flux was measured to be 4-6 MW/m² in the 4 MW NBI-heated H-mode phase. Using midplane or divertor D₂ injections at rates R=(1.4 - 11) × 10²¹ particles/s the OSP peak heat flux was reduced by up to 80 % in the radiative high-recycling divertor regime. A further increase in gas puffing rate to 3×10^{22} particles/s produced a partial OSP detachment and an X-point MARFE which degraded the core plasma confinement. On the basis of the two point model arguments the open divertor geometry and short connection length are identified as factors leading to reduced radiative and momentum losses in the NSTX divertor.

Acknowledgements

This research was supported by the U.S. Department of Energy under Contracts W-7405-Eng-48, DE-AC02-76CH03073, DE-AC05-00OR22725, and W-7405-ENG-36.

Goal - develop steady-state divertor heat load mitigation scenarios in a large Spherical Torus

- Steady-state divertor heat load mitigation one of the key Boundary Physics issues in Spherical Tori (ST)
- Low aspect ratio magnetic configuration leads to
 - small divertor volume
 - small plasma wetted area
 - high q_{\parallel}

rsity of Californ

awrence Livermore lational Laboratory

- short connection length L_{μ}
- High SOL mirror ratio $M = |B_{min}| / |B_{max}|$
- SOL area factor: $A_{out} > A_{in}$
- Divertor heat flux mitigation solutions:
 - Poloidal flux expansion at outer strike point (OSP)
 - Strike point sweeping
 - Radiative divertor: outer SOL in high-recycling regime with enhanced radiation at divertor plate
 - Dissipative divertor (detachment)

- poloidal index
- These scenarios must be compatible with good core plasma performance (Hmode confinement, MHD, ELM regime, density)

Outline

- NSTX background: parameters, divertor heat and particle fluxes, divertor asymmetries
- Naturally occurring divertor regimes in NSTX
- Study of outer strike point (OSP) heat flux reduction and detachment with D₂ injection
 - radiative divertor (RD) regime compatible with high performance H-mode plasmas
 - partially detached divertor (PDD) regime
- \checkmark OSP heat flux reduction by flux expansion

• Summary

rence Livermore onal Laboratory

Divertor heat flux mitigation in NSTX: background

NSTX divertor

- open, horizontal targets, graphite tiles, no activ pumping
- Typical divertor tile temperature in ~ 1 s NSTX pulses T < 300 C. Engineering limit is T = 1200 C.
 Long pulses will require steady-state heat flux mitigation solutions
- $-q_{out} < 10 \text{ MW/m}^2$, P/R < 9
- Goal study divertor heat flux reduction and detachment
 - in lower single null δ = 0.4-0.5, κ = 1.8-2.0 configuration with D₂ puffing
 - in lower single null δ = 0.7-0.8, κ = 2.2-2.5 configuration by flux expansion

NSTX reference data

NSTX eng. and plasma parameters

R = 0.85 m, a = 0.67 m, A = R/a > 1.27, $P_{NBI} < 7$ MW, $P_{HHFW} < 6$ MW, $B_{t} < 0.6$ T

NSTX fueling

* 1 Torr I/s = 7e19 s⁻¹

- Gas injection: low field side (LFS, top + side) and high field side (HFS, midplane + shoulder). D_2 , He, injected at S = 20 80 Torr I /s.
- Neutral beam injection system: three beams, 80 100 keV, 0.8-7 MW, fueling rate: S < 4 Torr I / s
- Supersonic gas injection: S = 30 65 Torr I / s

NSTX wall conditioning

- Between shots He GDC, He conditioning plasmas
- TMB and Plasma TMB
- Bake out at 3500 C
- Li coatings deposited by Li evaporator

NSTX pumping

- Turbomolecular pump (3400 l / s)
- NBI cryopump (50000 I / s, in NBI plasmas only)
- Conditioned walls, Li coatings

Plasma Facing Components

- ATJ graphite tiles on divertor and passive plates
- ATJ and CFC tiles on center stack
- Thickness 1" and 2"

V. A. Soukhanovskii, IAEA FEC, Poster EX-P4-28, 16-21 October 2006, Chengdu, China

NSTX diagnostic set enables divertor studies

V. A. Soukhanovskii, IAEA FEC, Poster EX-P4-28, 16-21 October 2006, Chengdu, China

7 of 25

- IRTV: two Indigo Alpha 160 x 128 pixel microbolometer cameras, 7-13 mm range, 30 ms frame rate
- Dα, Dγ, C III filtered cameras: four Dalsa 1 x 2048 pixel CCDs, filter FWHM 10-15 A, frame rate 0.2 - 1 ms
- Neutral pressure gauges: four micro-ion gauges on top and at midplane, two Penning gauges in lower and upper divertor, time response 5-10 ms
- High-resolution spectrometer ("VIPS 2"): ARC Spectro-Pro 500i, three input fibers (channels), time response 15-30 ms, FWHM > 0.6 A
- **Bolometry**: midplane (AXUV radiometer array), divertor ASDEX-type four channel bolometer, time response 20 ms
- Langmuir probes: midplane fast probe tile LPs I_{sat} , T_e measurements
- Midplane Multi-point Thomson scattering with 2-4 points in SOL

ersity of California

Lawrence Livermore

NSTX divertor regimes

- Heat flux asymmetry always $q_{out}/q_{in} > 1$, typically $q_{out}/q_{in} = 2$ -4. Typical peak heat flux $q_{in} < 0.5$ -1.0 MW/m², $q_{out} < 2$ -7 MW/m² in 2-6 MW NBI-heated plasmas
- Recycling in-out asymmetry up to 15 from divertor $D\alpha$ profiles
- Divertor Dγ observed in inner divertor only, typical ratio Dγ/ Dα about 0.020 -0.12 - sign of volume recombination
- High divertor neutral pressure (0.1-0.2 mTorr), neutral compression ratio is 5-10 (open divertor)
- Inner divertor leg is naturally detached throughout most of operational space, similarly to conventional tokamak divertors operating w/o pumping. Outer divertor leg is always attached, being in sheath-limited and high-recycling regime up to $n_e < n_G$

Upper traces - attached, lower traces - detached

- In dense low temperature plasmas 3-body recombination rate is high Lyman (FUV), Balmer (UV), Paschen (NIR) series lines are prominent
- Stark broadening due to plasma electron and ion statistical microfield
- n_e = 0.6-6 x 10²⁰ m⁻³ from Stark broadening (Model Microfield Method calculations)
 Soukhanovskii et. al., Rev. Sci. Instrum. 77, 10F127 (2006)
- $T_e = 0.3-1.3 \text{ eV}$ from line intensity ratios (Saha-Boltzman population distribution, ADAS data)

A range of core and divertor conditions obtained at various divertor D₂ puffing rates

Radiative divertor obtained using moderate rate divertor gas puffing; OSP peak heat flux reduced

Radiative divertor regime

- Obtained by steady-state D₂ injection in PFR or at ISP at 80-160 Torr I /s
- \checkmark OSP heat flux reduced by 2-5
- \checkmark ISP heat flux practically unaffected
- ✓ X-point ("divertor") MARFE developed during gas puffing
- No sign of volume recombination at OSP until later phase of gas injection
- Divertor bolometer signal increased from 10-15 W/m² to 20-30 W/m²
- ✓ Generally compatible with H-mode
- Gas puffing eventually caused confinement degradation, locked mode, large MHD modes and low *m,n* modes
- RD is suitable for heat flux reduction in long high-performance Hmode plasmas

Core confinement properties are unaffected by moderate flow rate divertor D₂ injection

- Core plasma parameters practically unaffected
- Gas puffing eventually leads X-point MARFE onset
- Discharge duration is limited by β-limiting instability (both reference and RD)

V. A. Soukhanovskii, IAEA FEC, Poster EX-P4-28, 16-21 October 2006, Chengdu, China

Radiative Divertor leads to OSP peak heat flux reduction by 2-5, development of X-point MARFE

- Outer peak heat flux reduced by x 2-5, but no sign of recombination
- X-point MARFE develops during gas puffing
- At highest D₂ puffing rate D γ /D α ratio at OSP transiently increases

ersity of California Lawrence Livermore National Laboratory

OSP partial detachment obtained using pulsed divertor D₂ injection at high flow rates

Partially detached divertor regime (OSP detached, outer SOL attached)

- Obtained by pulsed D_2 injection at > 200 T I /s at ISP
- OSP heat flux reduced by 4-5
- ✓ ISP heat flux did not change
- \checkmark Broadened Da and Dy brightness profiles, increases outer leg Dy / Da ratio volume recombination at OSP
- \checkmark Divertor bolometer signal increased from 10-15 W/m² to 15-20 W/m²
- \checkmark Correlation of ${\it I}_{sat}$ drop in Langmuir Probe close to OSP and Dy / Da increase in OSP region
- ✓ Detachment extent: 2-3 cm at OSP, detached only during gas pulse
- ✓ H-L transition within 20-100 ms

Core confinement properties are affected by high flow rate deuterium injection in PDD

6

- Core plasma parameters degrade quickly
- X-point MARFE develops within 20-30 ms
- Discharge duration is limited by large MHD modes, confinement degradation

V. A. Soukhanovskii, IAEA FEC, Poster EX-P4-28, 16-21 October 2006, Chengdu, China

15 of 25

160

0.

OSP partial detachment evident from peak q_{out} reduction and onset of volume recombination

Pulsed D₂ injection from ISP divertor region

- Decreased peak q_{out} by 4-5, with peak shift outward by up to 3 cm
- Broadened Da and Dy brightness profiles, increased outer leg Dy / Da ratio at OSP
- Divertor C II profile also broadened during gas pulses
- X-point MARFE onset during gas pulses

Langmuir probe I_{sat} and $D\gamma/D\alpha$ brightness ratio at OSP indicative of partial detachment

V. A. Soukhanovskii, IAEA FEC, Poster EX-P4-28, 16-21 October 2006, Chengdu, China

Significant OSP peak heat flux reduction can be achieved by poloidal flux expansion

- High-performance long-pulse H-mode plasmas (Menard OV-2-4)
- Poloidal flux expansion at OSP 20-25

rersity of California Lawrence Livermore

National Laboratory

- ISP on vertical target (detached), OSP on horizontal target
- OSP detachment threshold to be investigated

More favorable scaling of peak OSP heat flux with input power is obtained in higher κ , δ plasmas

- Scaling depends on fueling location and gas injection rate
- P_{SOL} is determined from measured and TRANSP-calcualted quantities as

$$P_{SOL} = P_{NBI} + P_{OH} - dW_{MHD}/dt - P_{rad}^{core} - P_{fast\ ion}^{loss}$$

V. A. Soukhanovskii, IAEA FEC, Poster EX-P4-28, 16-21 October 2006, Chengdu, China

UEDGE modeling guided detachment experiments

- Model divertor conditions vs P_{in}, n_{edge} with UEDGE to guide experiment
- Generic low κ,δ LSN equilibrium used
- Diffusive transport model
- Impurities (carbon) included
- Outer midplane n_e , T_e profiles matched, D_{α} and IRTV not matched

Parallel momentum and power balance:

$$\frac{d}{ds}(m_i nv^2 + p_i + p_e) = -m_i(v_i - v_n)S_{i-n} + m_i vS_R$$
$$\frac{d}{ds}((-\kappa T_e^{5/2}\frac{dT_e}{ds}) + nv_{||}(\frac{5}{2}(T_i + T_e) + \frac{1}{2}m_i v_{||}^2 + I_0)) = S_E$$

Lawrence Livermore National Laboratory

Large momentum and power losses are needed for divertor detachment according to 2PM-L

 $f_{p}=0.5, f_{m}=0.1$

6

awrence Livermore National Laboratory

Why is it difficult to obtain OSP detachment?

- Connection length decreases to very short values within radial distance of 1-3 cm (both midplane to plate and X-point to plate)
- SOL temperature 10-40 eV (rather low)
- Weak dT_e/ds_{II} in high-recycling outer SOL
- Carbon cooling rate max at $T_{\rm e}$ < 10 eV

• Recombination time:

$$\tau_{rec} = 1./(n_e R_{rec}) \sim 1-10 \text{ ms at } T_e = 1.3 \text{ eV}$$

lon divertor residence time:
 $\tau_{ion} = L_d/v_{ion} \sim 0.8 \text{ ms}$ (with $v_{ion} \sim 10^4 \text{ m/s}$)

- Open divertor geometry high detachment threshold is expected
- Neutral compression ratio is 5-10 (low)

Observed midplane and PFR pressure trends are due to open divertor geometry

- In reference discharges, n_{u} independent of P_{mp} , but a strong linear function of P_{PFR}
- X-point MARFE critical PFR pressure is 0.5-0.6 mTorr
- Reference discharges never reach
 PFR critical pressure
- PDD discharges reach MARFE onset PFR pressure faster than RD discharges
- *P_{mp}* similar in ref. and RD discharges
- *P_{mp}* higher in PDD discharges (stronger gas puffing)

vrence Livermore

Summary and Future work

- Divertor heat flux reduction and detachment in low aspect ratio geometry are studied in high input power H-mode plasmas in NSTX
- OSP peak heat flux was reduced x 2-5 using high recycling radiative divertor and partially detached divertor regimes in low δ, κ LSN 4 MW H-mode plasmas with divertor D₂ puffing
- Significant (x 2-3) reduction in peak divertor heat flux has been achieved in 4 MW high δ , κ LSN configuration using high flux expansion
- Future work will focus on
 - dissipative divertor regimes with CD₄ puffing
 - dissipative or radiative divertor regimes in high δ , κ H-mode plasmas relevant to Component Test Facility

Sign-up sheet

V. A. Soukhanovskii, IAEA FEC, Poster EX-P4-28, 16-21 October 2006, Chengdu, China

