

Overview of results from the National Spherical Torus Experiment (NSTX)

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL **PPPL** PSI **Princeton U SNL** Think Tank, Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

D. A. Gates, PPPL

For the NSTX Research Team

22nd IAEA Fusion Energy Conference Geneva, Switzerland October 13-18, 2008

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA. Cadarache IPP, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

NSTX has made leading contributions in many areas of toroidal fusion science

- NSTX Mission is to:
 - Establish attractive ST operating scenarios & configurations
 - Complement tokamak physics and support ITER
 - Understand unique physics properties of the ST (in red) ⇒ basis of all the elements of the NSTX mission

<u>Outline</u>

- In support of this mission, NSTX has made significant progress in the areas of:
 - Transport and Turbulence
 - Plasma/wall interactions
 - MHD
 - Waves
 - Non-inductive startup
 - Advanced scenarios and control
 - Direct ITER support

NSTX Designed to Study High- β Toroidal Plasmas at Low Aspect-Ratio

1.27 - 1.6

1.8 - 3.0

0.2 - 0.8

0.85m

1.5MA

0.4 – 0.55 T

~2 - ~1 s)

 $5 - 7 \,\text{MW}$

5 - 2s)

6 MW (5 s)

1-5 keV

≤1.2×10²⁰m⁻³

Observed onset of high-k electron turbulence consistent with ETG

- NSTX ideal experiment for electron turbulence measurements -
 - relatively large ρ_e^* , large magnetic shear gives strong spatial localization
- Using High Harmonic Fast Wave heating to modify Te profiles, observed turbulence
 - scales with R/L_{Te}, rotates in electron direction, has large $k_{\perp}\rho_{l} >> 1 \rightarrow$ Inconsistent with ITG turbulence
- GS2 calculations of ETG critical gradient show agreement with the onset of turbulence
- Have begun quantitative assessment of observed fluctuations on transport

Non-resonant *n*=3 magnetic braking capability is used to probe effect of *ExB* shear on confinement

- During beam injection, NSTX typically operates with $\gamma_{ExB} \sim 1MHz \sim 4-5\gamma_{ITG}$
 - Expect routine flow shear suppression of ion scale turbulence on NSTX

Energy

- n=3 braking reduces the magnitude of edge velocity shear
- Leads to an increase of edge ion thermal diffusivity

Momentum

- TRANSP analysis of rotation data from charge exchange $\chi_{\phi} >> \chi_{\phi neo}$
- Indicates residual low-k turbulence

See talk by S. Kaye EX/3-2

Also, W. A. Solomon, et al., Phys. Rev. Letters 101, (2008) 065004

Lithium coating increases confinement and suppresses ELMs

- Lithium evaporation capability greatly improved
 - Redesigned evaporator with higher temperature, better alignment
 - Second evaporator added in 2008

Edge studies investigate scalings and mitigation of large SOL power flows

- Because of low-A effects, NSTX routinely operates with peak divertor heat fluxes ~ 10MW/m²
 - Similar in magnitude to ITER heat divertor heat flux
- Important to mitigate heat flux and understand scaling to future low aspect ratio devices

Mitigation

- Divertor gas puffing reduces peak heat flux to 1.3MW/m²
- Plasma performance maintained during gas puff

SOL width scaling

- Near SOL: $\lambda_{Te}/\lambda_q \sim 2.5$, closer to electron conduction dominant case ($\lambda_{Te}/\lambda_q = 3.5$) than sheath limited case ($\lambda_{Te}/\lambda_q = 5$)
- Far SOL: $\lambda_{Te}/\lambda_q \sim 1.2$, suggesting other dominant process

n=1 RFA/RWM control combined with n=3 error correction increases β and extends pulse

MHD spectrogram with n=1

feedback and n=3 correction

- MHD spectrogram w/o n=1 feedback and n=3 correction
- Shot 116318, n= Shot 129125, n= 100 100 80 Frequency (kHz) Frequency (kHz) 60 60 40 40 20 20 04 1.0 14 02 0.6 0.8 0.2 0.4 0.8 1.0 1.2 1.4 0.6 Time (s) Time (s) n=1 mode drops β No MHD, β and rotation maintained CHERS v, at R = 139cn 8 40 $\beta_{\rm N}$ (MA/(mTesla) 30 6 v_t (km/s) 20 4 **4**3**nV Red with control** Red with control 10 Black w/o control Black w/o control 0 1.5 0.0 1.5 0.0 0.5 0.5 1.0 1.0 time (s) time (s) 0.0 See talk by S. Sabbagh EX/5-1 See also talk by H. Reimerdes/J. K. Park EX/5-3R
- Non-axisymmetric feedback algorithm has been developed using unique feedback training scheme
 - Prevents onset of MHD modes
 - Plasma rotation is maintained throughout discharge
 - Control statistically raises β and increase pulse length

Pulse averaged β_N vs. current flat-top

n=3 braking enables investigation of effects of rotation and rotational shear on MHD stability

- Neoclassical island drive is measured at onset of 2/1 NTM
 - Shows clear increase with rotation shear, no clear trend with rotation
 - Also clear increasing trend in required island drive with type of trigger with EPM \rightarrow ELM \rightarrow no visible trigger
- Indicates role of flow shear in stabilizing NTMs
- Will impact NTM stability in ITER

See ITER poster by R. Buttery IT/P6-8

Edge density control using lithium coating has improved coupling efficiency of both HHFW heating and EBW emission

- NSTX explores the wave physics of overdense plasmas
 - HHFW heating efficiency improved by operating below the critical density for coupling to surface waves
 - $n_{e_crit} \sim Bk_{\parallel}^2/\omega$
 - HHFW heats electrons in beam heated deuterium H-mode for first time

Multi-mode TAE avalanches are observed to induce fast particle loss on NSTX

- Because of its low toroidal field and high neutral beam voltage, NSTX routinely • operates with $v_{fast}/v_{Alfvén} > 1$
- Avalanches show modes with multiple n-numbers •
 - TAE mode internal structure and amplitude are measured
 - Avalanche threshold also measured with beam voltage scan
- Particle losses are modeled using data, NOVA, and ORBIT •
 - Good agreement found between measured and predicted losses
- Important physics for ITER and burning plasmas

See talk by N. Gorelenkov TH/5-2

NSTX

IAEA FEC 2008 - NSTX Overview (Gates)

3

2

0

1.0

11

Ohmic ramp-up coupled to CHI startup plasma

- Because of low aspect ratio, NSTX has very limited inductive flux ~0.7Vs
- CHI ramps current from 0 to ~100-150kA of closed flux current
 - Current multiplication = $I_{inject}/I_p \sim 70$
- Fixed loop voltage applied current ramped to ~0.7MA
- NBI heating applied, plasma often enters H-mode

NSTX accesses long pulse at high β with extreme plasma shaping scenario

- Because of improved vertical stability at low aspect ratio, NSTX can access very high elongation *κ* ~ 3
 - $f_{bs} \sim (1 + \kappa^2)/2$
- β maintained well above the no-wall limit, $\beta_N \sim 5$
- Pulse extended maintained non-inductive current fraction $f_{NI} \sim 65\%$ for $1-2\tau_{CR}$ - limited by TF coil heating limit
 - Uses n=3/n=1 control described earlier
 - Also uses lithium coating to improve confinement

13

NSTX is improving understanding of RMP ELM control and vertical stability for ITER

- Experiments using external n=3 fields with single row of midplane coils did not suppress ELMs
- Pulsed n=3 error fields triggered ELMs in discharges with lithium ELM suppression
 - ELM pacing with RMP coils? _ 0.20 (LM) (MJ) 0.15 0.10 0.05 0.00 1.5 (kA) 1.0 RMP 0.5 0.0 Da (A.U.) 2 Rad. Pwr. (MW) 2.0 **ELMS remove impurities** 1.5 reduce radiation 1.0 0.5 0.0 0.0 0.2 0.4 0.6 0.8 1.0 time (s) See post-deadline paper by J. Canik

- Experiments using induced VDEs have measured ∆z_{max}
- Results consistent with ∆z_{max}/a > 0.1 for robust control
- Crucial that ITER has robust vertical control - internal control coil added
- Typical induced VDE Evolution on NSTX

See rapporteured talk by A. Portone/D. Humphreys IT/2-4

NSTX has advanced the science of toroidal confinement and the ST concept across a broad spectrum of topics

- NSTX has progressed towards understanding the unique physics properties of the ST
 - Measured electron-scale turbulence consistent with ETG
 - Improved confinement with lithium
 - Measured and controlled edge and divertor power flows
 - Increased β and pulse length with RWM/RFA control
 - Improved wave coupling in over-dense plasmas with lithium
 - Observed and modeled TAE avalanches important for burning plasmas and ITER
 - Coupled inductive ramp-up to CHI plasma
 - Achieved high β simultaneous with extreme plasma shaping
 - Investigated ELM RMP control and vertical stability for ITER
- These results are very promising for proposed future STs, such as NHTX and ST-CTF

See NHTX poster by R. Goldston FT/P3-12

See ST-CTF poster by Y. -K. M. Peng FT/P3-14

NSTX related posters at this conference

			Posters	
Talks		Tuesday		
Wednesday		Electron transport	H. Yuh	EX/P3-1
"Momentum Transport in Electron-Domina	ted	NHTX	R. Goldston	FT/P3-12
Spherical Torus Plasmas" S. Kaye	EX/3-2	ST-CTF	YK. M. Peng	FT/P3-14
"Advances in Global MHD Mode Stabilizati	on			
Research on NSTX" S. Sabbagh	EX/5-1	Wednesday		
"Effect of Resonant and Non-resonant Mac	netic	Lithium performance	R. Kaita	EX/P4-9
Braking on Error Field Tolerance in High Beta		Edge turbulence	D. A. D'Ippolito	TH/P4-17
Plasmas" H. Reimerdes/J. K. Park	EX/5-3R	Divertor flux	or flux V. Soukhanovskii EX/P4-	
"Toroidal Alfven Eigen-mode Avalanches"				
E. Fredrickson	EX/6-3	Thursday		
"Theory and Observations of Low Frequency		Small ELMs	R. Maingi	EX/P6-4
Toroidal Fusion Plasma" N. Gorelenkov Friday	TH/5-2	ITER NTMs	R. Buttery	IT/P6-8
		СНІ	R. Raman	EX/P6-10
		EBW emission	S. Diem	EX/P6-17
Humphreys	IT/2-4	HHFW heating	C. Phillips	EX/P6-25
Saturday				
"Turbulent Fluctuations with the Electro Gyro-scale		Friday		
in the National Spherical Torus Experiment" E. Mazzucato EX/10-2		Gyrokinetics	W. X. Wang	TH/P8-44
		Post deadline		
		ELM triggering	J. Canik	

