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Non-axisymmetric magnetic fields can stop the plasma

rotation, drive locked modes and cause disruptions

1. Plasma response to external non-axisymmetric perturbations is
key in understanding the n=1 error field tolerance:

a) In high g, H-mode plasmas
b) In low B, L-mode plasmas

2. Magnetic braking of the plasma rotation is caused by two
effects:

a) By shielding of resonant magnetic fields at rational g-
surfaces

b) By distortion of magnetic flux surfaces enhancing the
neoclassical toroidal viscosity (NTV)
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Error field tolerance in NBl heated H-modes is determined

by resonant braking leading to a loss of torque balance
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Tolerance to external n=1 perturbations decreases with

increasing By due to plasma amplification

 Decrease of critical external field
0B,%; is particularly strong above
the no-wall limit

* Amplification increases when

ideal MHD stable n=1 kink mode
converts to kinetically stabilized

RWM [see Okabayashi, EX/P9-5]

* Rotation collapse occurs at a fixed

plasma response 3B’ c:

plas
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increases with NBI torque T,
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Plasma is very sensitive to the poloidal spectrum

(pitch angle) of the external perturbation
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Non-axisymmetric magnetic fields can stop the plasma

rotation, drive locked modes and cause disruptions

1. Plasma response to external non-axisymmetric perturbations is
key in understanding the n=1 error field tolerance:

a) In high g, H-mode plasmas
b) In low B, L-mode plasmas

2. Magnetic braking of the plasma rotation is caused by two effects:

a) By shielding of resonant magnetic fields at rational g-
surfaces

b) By distortion of magnetic flux surfaces enhancing the
neoclassical toroidal viscosity (NTV)
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Ignoring the plasma response even at low g leads to
paradoxical results in error field correction experiments

« External resonant field : 8BS = 8B,]""° + 8B ™" at gq=2 surface

— Experiments in many tokamaks have shown that the plasma density at
locking increases proportionally with the external field

* However, the external resonant field ...
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Plasma response given by
Ideal Perturbed Equilibrium Code (IPEC)

* IPEC calculates free-boundary 3D tokamak equilibria while preserving
p(w) and q(y) profiles
[IPEC is based on DCON and VACUUM stability codes] [Park, Phys. Plasmas (2007)]
1) Islands are shielded by rotation before locking, so plasma remains ideal
— Shielding currents at the rational surfaces give the total resonant field

2) Magnetic surfaces are not destroyed, but deformed
— Important variation of the field sitrength is along the perturbed field lines, not at fixed
points in space (as used in vacuum superposition method)

Superposition IPEC
(equilibrium + n=1 vacuum) e,

Islands No islands
Flux surface destruction Flux surface deformation
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Total resonant field including plasma response explains
paradoxical NSTX and DIII-D low g experiments
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Plasma response (IPEC) connects error field tolerance at

high g with Ohmic plasmas via the linear density scaling

» Critical resonant field (IPEC)
at f,=1.5 and low NBI torque
in good agreement with the
low-B density scaling

— NSTX n=1 resonant field
amplification experiments
validate IPEC up to the
ideal MHD no-wall limit
[see Park, EX/5-3Rb poster]
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Non-axisymmetric magnetic fields can stop the plasma

rotation, drive locked modes and cause disruptions
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Measured n=1 braking torque reveals imporiance of

a non-resonant magnetic braking component

 Measured angular momentum
evolution yields magnetic
braking torque 7,5

L dL
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reveal rotation dependence
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« At low rotation T,,; increases with decreasing Q consistent with a

resonant torque

« At high rotation 7,5 increases with Q — typical for a non-resonant torque

[Shaing, Phys. Plasmas (2003)]

Dili-D

NATIONAL FUSION FACILITY

22nd IAEA FEC - H. Reimerdes



Non-resonant magnetic braking reduces the benefit of

additional torque input

* Torque balance with a resonant Tolerable plasma response in n=1 braking experiments

torque only yields wW——T .

0B, & Tiy + Ty,

with T, being the intrinsic torque
[see Solomon, EX/3-4 for T, ]
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« Adding a non-resonant torque [ ,
reduces the dependence of 4B, S
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* Observed increase of the n=1 error field tolerance with NBI torque is
consistent with a significant contribution of non-resonant braking
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Neoclassical Toroidal Viscosity (NTV) theory gives the
toroidal torque for non-resonant braking

. . . NSTX
° |mport<?nt physu:s.ln NTV theory : n=3 rotation braking
a) Toroidal precession rates (w,) are often experiment
faster than the collisional rates (v) NTV theory .vs. experiment
b) Trapped particle bounce rates (o,) can 100.000¢ I
resonate with the precession (w,)
measurement
c) Variation of field strength along the 10.000 -
perturbed magnetic field lines, which -
include plasma response ‘&% L vacuum
- Vacuum superposition model uses the £ 1.000p 1w (4) 3
field variation at fixed points in space g (1)
E’ - s
5 0.100; vacuum 3
(1) (a), (b) and (c) are all ignored § general
(2) (a) is included )
. 0.010
(3) (a) and (b) are included » vaf:u)um
(4) (a), (b) and (c) are all included _ vt
[see Park, EX/5-3Rb poster & Becoulet, TH/2-1Rb] 0.001L . . . N R

0.0 0.2 0.4 0.6 0.8
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Resonant Magnetic Perturbation (RMP) control of ELMs on ITER
can be optimized using IPEC and NTV theory

* Three requirements for optimization :
1) Islands overlap for y,>0.85 [see Evans, Ex/4-1]
2) Minimize }(8B,,,)?%/ Z((SBeX*mn)zboundq,y for ¢ <0.8
3) Maximize Y (8B ,,)%/ ¥(3B**'n)*p0undary fOr ¥5>0.8 (f) Rotation damping rate [/s]

(d) Chirikov parameter 100¢
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Summary

* Plasma response to external non-axisymmetric perturbations is key in
understanding the n=1 error field tolerance in high , H-mode as well as in
low B, L-mode plasmas

— Plasma response in rotating plasmas with values of p up to the ideal
MHD stability limit is described by ideal perturbed equilibrium theory
(IPEC code)

— Measurements and calculations show that plasmas are most sensitive
to a kink and ballooning-type external perturbation rather than
external resonant perturbations

* Magnetic braking of the plasma rotation is caused by shielding of
resonant perturbations and by the distortion of magnetic flux surfaces
enhancing neoclassical toroidal viscosity (NTV)

— Non-resonant braking reduces the benefit of additional torque input

— Description of non-resonant braking has to include the variations of
the field strength on deformed magnetic surfaces and particle
bounce/precession resonances
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