

Supported by

Optimization of Density and Radiated Power Evolution Control using Magnetic ELM Pacemaking in NSTX

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Marvland **U** Rochester **U** Washington **U** Wisconsin

J.M. Canik, ORNL

R. Maingi, A.C. Sontag (ORNL), R.E. Bell, S.P. Gerhardt, H.W. Kugel, B.P. LeBlanc, J. Manickam, J.-K. Park (PPPL), T. Osborne (GA), S.A. Sabbagh (Columbia U), V.A. Soukhanovskii (LLNL) and the NSTX Research Team

23rd IAEA Fusion Energy Conference Daejon, Korea Oct 11-16, 2010

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati **CEA**, Cadarache **IPP. Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Office of

Outline

- Introduction to NSTX
 - PFC conditioning techniques
 - 3D magnetic perturbation coil set
- ELM destabilization with 3D fields
 - Threshold perturbation to cause ELMs
 - Changes to plasma profiles
- Perturbations are used for ELM-pacing with Li conditioning
 - ELM suppressed with Li-coated PFCs
 - 3D fields trigger ELMs at will, reduce impurity accumulation
 - Reduces ELM size-potential ELM control technique in future devices

NSTX Facility Capabilities

Slim center column with TF, OH coils + Lithium coating	R, a _{max}	0.85, 0.67 m
	Aspect ratio A	1.27 – 1.6
Excellent diagnostic access	Elongation κ	1.6 – 3.0
	Triangularity δ	0.3 – 0.8
	Toroidal Field B_{T0}	0.3 – 0.55 T
	Plasma Current I _p	≤ 1.5 MA
	Auxiliary heating:	
	NBI (100kV)	≤ 7.4 MW
	Central temperature	1 – 6 keV
	Central density	≤1.2×10 ²⁰ m ⁻³

3

Two PFC conditioning techniques are studied: boronization and lithium coatings

- Similar discharges compared with boronized/lithium coated PFCs
 - Lithium evaporated onto PFCs between discharges
- Plasma with lithium coated PFCs has higher energy confinement
- Boronization: ELMy
- Lithium: ELM-free
 - Suffers from impurity accumulation

External midplane coils are used to apply perturbation with strong resonant and non-resonant components

n=3 configuration is used in all experiments presented here

Resonant component amplitudes are sufficient for creating a stochastic edge

- Vacuum and IPEC calculations give different regions of strong resonance
 - Vacuum case: $\sigma^{ch} > 1$ implies overlapping islands, stochasticity
 - IPEC: ideal plasma response -> σ^{ch} is a measure of resonant fields, no islands are allowed

ELMs are destabilized above a threshold perturbation in both boronized and lithiumized plasmas

Boronized PFCs

- n=3 field applied during ELM-free/small ELM phase of discharge
- Above a threshold n=3 field ELMs destabilized for boroninzed or lithiumcoated PFCs
- ELM frequency increases with n=3 field magnitude
 - High fields also brake plasma strongly, degrade global stability

Li-coated PFCs

Oct 10, 2010

With boronized PFCs, T_e^{ped} increases when n=3 field is applied

- Blue profiles: no n=3 applied
- Red profiles: 20 ms after n=3 applied (before ELMs)

- No density pumpout is observed
- T_e, pressure gradient increases after n=3 field is applied
 - ~30% increase in peak pressure gradient from tanh fits
 - PEST shows edge unstable after n=3 application

Flattening of n_e/T_e inside pedestal in response to perturbation observed with lithium coatings

Data combined from several shots, all before ELMs start Color code: Just before n=3, 30 ms after, ~50/65 ms after T_e, n_e show flattening from ψ_N ~0.8-0.9, similar gradient outside 0.9 Toroidal rotation reduced after n=3 field is applied, with a local minimum near ψ_N =0.9

Island formation inside pedestal?

Magnetic ELM triggering has been applied to lithiumized ELM-free H-modes to control impurity accumulation

Typical behavior with Li wall conditioning ELMs suppressed

 P_{rad} ramps to ~2 MW; P_{NBI} = 3 MW

Square wave of n=3 fields applied to LITER discharge

Fast pulses used rather than DC fields to reduce rotation braking

4 ms pulses, f=10/30 Hz, amp. 2.2 kA

ELMs can be triggered at will

Full control over ELM timing and frequency

Used here for discharge control, reducing n_e and P_{rad} ramp rate

n=3 pulse waveform has been optimized to give reliable high frequency triggering with reduced rotation braking

 Maximizing pulse amplitude allows rapid triggering

 \rightarrow Shorter pulses

- Opposite-sign trailing pulses added after each triggering pulse
 - Counteracts vessel eddy currents, reduces field inside vessel more quickly
 - \rightarrow Reduced plasma braking
- ELM frequencies up to 62.5 Hz have been achieved
 - Avoids intermittent very large ELMs seen with unreliable triggering
 - Frequency partially limited by vessel penetration time

Pacing frequency varied to optimize for impact on impurities, ELM size

- Pacing has a positive impact on density/impurity evolution at all frequencies
 - n_e is reduced, rise is slowed
 - High-Z impurities: radiated power reduced, held below ~25% of P_{NBI}
 - Low-Z: total carbon content and Z_{eff} reduced, time evolution controlled
- Impact on impurities considered at three times in discharge
 - t=0.4 s: beginning of pacing
 - t=0.75 s: during pacing
 - t=1.25 s: near end of discharge

Pacing frequency varied to optimize for impact on impurities, ELM size

- Low frequency pacing may be ideal for impurity control while minimal impact on energy confinement
 - Stored energy reduced with high frequency (10% reduction at 60 Hz)
 - P_{rad} <1 MW for pacing >20 Hz
- ELM size is reduced at higher frequency pacing
 - Average ELM size reduced from $\Delta W/W \sim 15\%$ at 10 Hz to $\sim 5\%$ at 60 Hz
 - Mean size of largest 20% of ELMs reduced from ~20% to ~10%

Combining ELM pacing with optimized fueling successful in producing quasi-stationary global parameters

- Fueling from a slow valve on the center stack was reduced, replaced with a puff with faster response
 - Allows fuelling to be turned off quickly following startup
- Applying n=3 pulses arrested the line-averaged density and total radiated power for 0.3 s
- Discharge performance was limited by n=1 rotating MHD

Although global parameters are stationary, profiles are still evolving

- Similar profile evolution observed in electron, carbon, and radiation densities
 - Edge density decreases in time during **ELM** pacing
 - Core value increases in time, rate is ٠ similar to case without pacing

- Core impurity control is needed
 - RF heating to mitigate central • accumulation is planned

Summary

- Application of n=3 fields can destabilize ELMs
 - Without lithium, n=3 reduces rotation, increases pedestal electron pressure
 - Stability calculations show pedestal is near limits, more research needed to explore transition from stable to unstable
 - With lithium, pedestal shows flattening of n_e , T_e
- ELM triggering has been used for magnetic ELM pace-making in Lienhanced ELM-free H-modes
 - Li coatings suppress ELMs, improve confinement, but problems with impurity accumulation
 - ELMs are controllably introduced with n=3 fields, reducing density and radiated power
 - Optimization of triggering waveform allows high frequency pacing
 - High amplitude, short duration pulses with negative-going trailing pulses give reliable triggering with reduced rotation braking
 - Global parameters have been fully arrested, but not profiles
 - ELM size is reduced at high frequency

Fast negative-going pulses can reduce the time-averaged magnetic field

Each triggering pulse is followed by a shorter pulse of the opposite sign Cancels eddy currents

Optimized to rapidly bring internal field to ~zero

Results in reduced time-averaged perturbation

-> less magnetic braking