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NSTX MHD Research is Addressing Needs for Maintaining 
Long-Pulse, High Performance Spherical Torus Plasmas

M d t il / l ti t
Motivation

Achieve high βN with sufficient physics understanding to allow 
confident extrapolation to ST applications (e.g. ST Component Test

More detail / closer connection to 
ST-CTF and ST Pilot here

confident extrapolation to ST applications (e.g. ST Component Test 
Facility, ST-Pilot plant, ST-DEMO)
Sustain target βN of ST applications with margin to reduce risk
Leverage unique ST operating regime to test physics models applyLeverage unique ST operating regime to test physics models, apply 
to ITER

Physics Research AddressedPhysics Research Addressed
Physics of plasma rotational stabilization to maintain high βN

Resistive wall mode (RWM) active control
M lti l l bl t l t t i t i βMultiple scalable control systems to maintain <βN>pulse

Physics of 3D fields to control plasma rotation profile (for greater 
stability, confinement)
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Multi-mode RWM spectrum in high βN plasmas



RWM (B )

NSTX is a spherical torus equipped for passive and active 
global MHD control, application of 3D fields

RWM sensors (Br)

Stabilizer
plates

High beta, low aspect ratio
R = 0.86 m, A > 1.27
Ip < 1.5 MA, Bt = 5.5 kG pp
βt < 40%, βN < 7.4

Copper stabilizer plates for kink 
d t bili timode stabilization

Midplane control coils
1 3 fi ld in = 1 – 3 field correction, 

magnetic braking of Vφ

n = 1 resistive wall mode (RWM) 
control

RWM sensors (Bp)
Varied sensor combinations used 
for RWM feedback
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RWM active stabilization coils
48 upper/lower Bp, Br



Resistive wall modes can terminate discharges at 
significant plasma rotation levels

RWM t bl l
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MHD spectroscopy shows increased resonant 
field amplification (RFA) in stable plasmas
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Understanding this physics is crucial to ensure 
sustained plasmas in present/future devices

140102



Si l iti l th h ld t bilit d l l f t b l d

Modification of Ideal Stability by Kinetic theory (MISK code) 
investigated to explain experimental RWM stabilization
Simple critical ωφ threshold stability models, loss of torque balance do 
not describe experimental RWM marginal stability

Small ωφ not sufficient condition for stability
WW δδ

Sontag, et al., Nucl. Fusion 47 (2007) 
1005.

Kinetic modification to ideal MHD growth rate
Trapped / circulating ions, trapped electrons, etc.

Energetic particle (EP) stabilization

Kb

K
w WW

WW
δδ
δδ

γτ
+
+

−= ∞

Hu and Betti, Phys. Rev. Lett 93 (2004) Energetic particle (EP) stabilization

Stability depends on
Integrated ωφ profile: resonances in δWK (e.g. ion precession drift)

105002.
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⎦⎣

collisionalityprecession drift bounce



MISK calculations consistent with RWM destabilization at intermediate 
plasma rotation; stability altered by collisionality

t dγτw contours vs. ν and ωφ
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Destabilization appears between precession drift resonance at low ωφ, 
bounce/transit resonance at high ωφ J.W. Berkery, et al., PRL 104 (2010) 035003



Model of kinetic modifications to ideal stability can unify 
RWM stability results between devices

NSTXNSTX
Less EP stability (pa/ptot = 4% at 
Ψ/Ψa= 0.75) – RWM can cross 
marginal point as ωφ is varied

thermal ions
NSTXDIII‐D (rescaled)

φ

MISK currently overpredicts stability
DIII-D

More EP stability (pa/ptot = 9.5% at 
Ψ/Ψ 0 75) RWM t bilit f ll

energetic particles (EPs)

Ψ/Ψa= 0.75) – RWM stability for all ωφ 

RWM destabilized by events that 
reduce EP population

JT 60U
H. Reimerdes, et al., paper EXS/5-4

DIII‐D

JT-60U
EWM unstable plasmas near 
computed ideal stability
MISK stability analysis underway

calculation with EPs

Δ

NSTX
y y y

ITER (advanced scenario 4)
RWM unstable at expected rotation
Only marginally stabilized by alphas at

G. Matsunaga, et al., paper EXS/5-3

NSTX
experiment

Δγτw ~ 0.1
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Only marginally stabilized by alphas at 
βN = 3

unstable See poster (EXS/5-5) for more detail



βN feedback combined with n = 1 RWM control to reduce βN
fluctuations at varied plasma rotation levels

Prelude to ωφ
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( )
Add latest results from XP1023

Re: Bp, Br n = 1 feedback



Stronger braking with constant n = 3 applied field and βN as 
ωE reduced – accessing superbanana plateau NTV regime
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NTV satisfies 1/ν regime criterion (|nqωE| < νi/ε and ν i < 1)
Stronger braking expected at low ωE (superbanana plateau regime) 
(K.C. Shaing et al., PPFC 51 (2009) 035009)



New RWM state space controller sustains high βN plasma

3000+F ll 3 D d l State reduction
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…
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Study RWM control physics with 
coils behind conducting material

), ,,,( 321 rN- instability B field / plasma response
- modeled sensor response
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NSTX especially well-suited for 
this research
Examined for ITER
Katsuro Hopkins et al NF (2007) 1157
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Katsuro‐Hopkins, et al., NF (2007) 1157
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Activity in RWM frequency range coincident in magnetic and 
kinetic diagnostics investigated as multi-mode RWM 
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Mode activity in RWM frequency range ( 30 Hz) 
seen in both magnetic, kinetic diagnostics
Stability calculations indicate multi-mode RWM 
response expected to be significant at βN >  5.5

Indicates global mode, magnitude, radial 
extent increases as βN increases
Activity correlated with magnetic fluctuations



Multi-mode RWM computation shows 2nd eigenmode component has 
dominant amplitude at high βN in NSTX stabilizing structure
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ITER scenario IV multi mode spectrum

1 Stabilized by rotation
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0 5 10 15 ITER scenario IV multi-mode spectrum
Significant spectrum to 6th eigenmodeDCON eigenmode number
See poster (EXS/5-5) for more detail



NSTX MHD Research is Addressing Topics Furthering Steady 
Operation of High Performance ST Plasmas

RWM instability, observed at intermediate plasma rotation, correlates 
with kinetic stability theory

Theory of kinetic modifications to ideal stability general enough to unify RWM 
(J.W. Berkery, et al., PRL 104 (2010) 035003)

stability results between devices
ITER advanced scenario 4 requires EP stabilization at expected ωφ

n = 1 RWM feedback control combined with new βN feedback control 
h l i f hi h i d l i l lshows regulation of high βN at varied plasma rotation levels

Compatible with plasma rotation control by non-resonant 3D fields

Strong non-resonant NTV braking observed from all νi/εnqωE(R) g g i q E( )
variations made

Transitions in NTV (stronger magnetic braking) at low ωE

New RWM state space controller sustains high βN plasma

Add NTV offset rotation result

p g βN p
Important for burning plasma devices with conducting structure shielding 
control coils

Theory shows multi-mode RWM response important at high βN; multi-
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y p p g βN
mode RWM spectrum shows significant amplitude in higher order modes


