

Supported by

Resistive Wall Mode Stabilization and Plasma Rotation Damping Considerations for Maintaining High Beta Plasma Discharges in NSTX

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL I odestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U Purdue U Sandia NL Think Tank, Inc. UC Davis UC Irvine UCLA UCSD **U** Colorado **U** Marvland **U** Rochester **U** Washington **U** Wisconsin

v1.9

S.A. Sabbagh¹, J.W. Berkery¹, J.M. Bialek¹, R.E. Bell², S.P. Gerhardt², O.N. Katsuro-Hopkins¹, J.E. Menard², H. Reimerdes¹, R. Betti^{2,3}, L. Delgado-Aparicio², D.A. Gates², B. Hu³, B.P. LeBlanc², J. Manickam², D. Mastrovito², J.K. Park², Y.S. Park¹, K. Tritz⁴

¹Department of Applied Physics, Columbia University, NY, NY ²Plasma Physics Laboratory, Princeton University, Princeton, NJ ³University of Rochester, Rochester, NY ⁴Johns Hopkins University, Baltimore, MD

> 23rd IAEA Energy Fusion Conference October 11th – 16th, 2010 Daejeon, Korea

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kvoto U Kvushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA. Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

NSTX is Addressing Global Stability Needs for Maintaining Long-Pulse, High Performance Spherical Torus Plasmas

Motivation

- Achieve high β_N with sufficient physics understanding to allow confident extrapolation to ST applications (e.g. Component Test Facility, ST-Pilot plant, ST-DEMO)
- **Sustain** target β_N of ST applications with margin to reduce risk
- Leverage unique ST operating regime to test physics models, apply to ITER

Physics Research Addressed

- Resistive wall mode destabilization at intermediate plasma rotation
- Resistive wall mode active control
- □ Multiple scalable control systems to maintain $<\beta_N >_{pulse}$
- Physics of 3D fields to control plasma rotation
- **D** Multi-mode RWM spectrum in high β_N plasmas

NSTX is a spherical torus equipped for passive and active global MHD control, application of 3D fields

- □ High beta, low aspect ratio
 - □ R = 0.86 m, A > 1.27 □ $I_p < 1.5$ MA, $B_t = 5.5$ kG □ $\beta_t < 40\%$, $\beta_N < 7.4$
- Copper stabilizer plates for kink mode stabilization
- Midplane control coils
 - □ n = 1 − 3 field correction, magnetic braking of ω_{ϕ}
 - n = 1 resistive wall mode (RWM) control
- Varied sensor combinations used for RWM feedback
 - □ 48 upper/lower B_p, B_r

Low plasma rotation level (~ 1% ω_{Alfven}) is insufficient to ensure RWM stability, which depends on ω_{ϕ} profile

Kinetic modification to ideal MHD growth rate $\gamma \tau_{_{W}} = -\frac{\delta W_{_{\infty}} + \delta W_{_{K}}}{\delta W_{_{L}} + \delta W_{_{\nu}}}$

<u>Reason</u>: simple critical ω_{ϕ} threshold stability models do not fully describe

- Trapped / circulating ions, trapped electrons, etc.
- Energetic particle (EP) stabilization
- Stability depends on
 - □ Integrated <u> ω_{ϕ} profile</u>: resonances in δW_{κ} (e.g. ion precession drift)

RWM marginal stability in NSTX Sontag, et al., Nucl. Fusion 47 (2007) 1005.

Particle <u>collisionality</u>, EP fraction

 $\underline{\omega}_{\phi}$ profile (enters through ExB frequency)

Hu and Betti, Phys. Rev. Lett 93 (2004) 105002.

5

<u>Trapped ion component of δW_{κ} (plasma integral)</u>

$$\delta W_{K} \propto \int \left[\frac{\omega_{*_{N}} + \left(\hat{\varepsilon} - \frac{3}{2}\right)\omega_{*_{T}} + \omega_{E} - \omega - i\gamma}{\left\langle \omega_{D} \right\rangle + l\omega_{b} - i\nu_{eff}} + \omega_{E} - \omega - i\gamma \right] \hat{\varepsilon}^{\frac{5}{2}} e^{-\hat{\varepsilon}} d\hat{\varepsilon} \quad \leftarrow \text{Energy integral}$$

Modification of Ideal Stability by Kinetic theory (MISK code) investigated to explain experimental RWM stabilization

MISK calculations consistent with RWM destabilization at intermediate plasma rotation; stability altered by collisionality

Destabilization appears between precession drift resonance at low ω_φ, bounce/transit resonance at high ω_φ J.W. Berkery, et al., PRL 104 (2010) 035003
 Destabilization moves to increased ω_φ as v_{eff} decreases

NSTX 23rd IAEA Fusion Energy Conference: RWM Stabilization, V_φ damping, Maintenance of High β in NSTX (S.A. Sabbagh, et al.) October 14th, 2010

Rotation profile at RWM marginal stability altered by varying energetic particle content

- I_p, B_t altered keeping q fixed in experiment
- Fast ion density increases with increased I_p
 - Indicated by fast ion $D_{\alpha} \text{ diagnostic}$
- General reduction of RWM marginal ω_{ϕ} profile as I_p increased

J.W. Berkery, et al., Phys. Plasmas 17 (2010) 082504

Model of kinetic modifications to ideal stability can unify RWM stability results between devices

□ NSTX

□ Less EP stability: RWM can cross marginal point as ω_{ϕ} is varied

DIII-D

- □ More EP stability (~2 x NSTX): RWM stable at all ω_{ϕ}
- RWM destabilized by events that reduce EP population

H. Reimerdes, et al., paper EXS/5-4

8

□ ITER (advanced scenario IV)

- **RWM** unstable at expected rotation
- Only marginally stabilized by alphas at $\beta_N = 3_{\text{See poster (EXS/5-5)}}$
- Stability overpredicted with EPs model development continues
 - Improve NBI anisotropic distribution
 - Examine effects originally thought small
 See poster (EXS/5-5)

ITER Advanced Scenario IV: RWM stabilized by energetic particles near marginal at $\beta_N = 3$

Equilibrium

- With β_N = 3 (20% above n = 1 no-wall limit)
- Plasma rotation profile linear in normalized poloidal flux
- Plasma rotation effect
 - □ Stabilizing precession drift resonance weakly enhances stability near $\omega_{\phi} = 0.8 \ \omega_{\phi}^{\text{Polevoi}}$
- Energetic particle (EP) effect
 - Alpha particles are required for RWM stabilization at <u>all</u> ω_φ
 - □ Near RWM marginal stability at ITER expected $\beta_{\alpha}/\beta_{total} =$ 0.19 at $\omega_{\phi} = \omega_{\phi}^{Polevol}$

β_N feedback combined with n = 1 RWM control to reduce β_N fluctuations at varied plasma rotation levels

- Prelude to ω_φ
 control
- Steady β_N established over long pulse
- Radial field sensors added to n = 1 feedback (2010)
 - Full sensor set further reduces
 n = 1 amplitude, improves control

Stronger braking with constant n = 3 applied field and β_N as ω_E reduced – accessing superbanana plateau NTV regime

(K.C. Shaing et al., PPFC 51 (2009) 035009)

New RWM state space controller sustains high β_N plasma

Multi-mode RWM computation shows 2^{nd} eigenmode component has dominant amplitude at high β_N in NSTX stabilizing structure

δBⁿ from wall, multi-mode response

□ NSTX unstable RWM

- Computed growth time consistent with experiment
- 2nd eigenmode ("divertor") has larger amplitude than ballooning eigenmode

D NSTX RWM stabilized by ω_{ϕ}

- Ballooning eigenmode amplitude decreases relative to "divertor" mode
- Computed RWM rotation ~ 41 Hz, close to experimental value ~ 30 kHz
- ITER scenario IV multi-mode spectrum
 - Significant spectrum for n = 1 and 2

See poster (EXS/5-5) for more detail

ITER Advanced Scenario IV: multi-mode RWM spectra computation shows significant ideal eigenfunction amplitude for several components

NSTX 23rd IAEA Fusion Energy Conference: RWM Stabilization, V₄ damping, Maintenance of High β in NSTX (S.A. Sabbagh, et al.) October 14th, 2010 14

NSTX is Addressing Global Stability Needs Furthering Steady Operation of High Performance ST Plasmas

	Implications for		<u>ns for</u>	
<u>Physics addressed</u>	<u>NB</u>	<u>Future STs</u> I-driven, high ω _φ)	<u> </u> <u> </u>	TER advanced scenarios (low ω_{ϕ})
RWM instability, observed at intermediate ω_{ϕ} , correlates with kinetic stability theory		ω_{ϕ} profile control Sufficient EP stabilization		Sufficient EP stabilization needed at low ω_{ϕ}
n = 1 RWM, β_N feedback control maintains high β_N at varied ω_{ϕ} using n = 3 NTV braking		Potential control compatibility		Potential control at low ω_{ϕ} if EP stabilization insufficient
Stronger NTV braking at reduced ω_{E}		ω_{ϕ} profile control impact		Further examine NTV at low ω_{ϕ}
Initial success of RWM state space controller at high β_N		More flexibility of control coil placement		More flexibility of control coil placement
Multi-mode RWM physics spectrum		Determine RWM control impact		Determine RWM control impact

Sign-up Sheet for Electronic Copy

Energetic particles are stabilizing to RWM; computed effect is smaller in NSTX when compared to DIII-D

NSTX 23rd IAEA Fusion Energy Conference: RWM Stabilization, V₆ damping, Maintenance of High β in NSTX (S.A. Sabbagh, et al.) October 14th, 2010 17

1.00

Advancements in MISK stability model continue

Electrostatic effect

The electrostatic component of the perturbed distribution function contributes to δW . (expected to be small).

$$\delta W_{oldsymbol{\Phi}} = -rac{1}{2}\int e^2 \left|oldsymbol{ar{\Phi}} + oldsymbol{\xi}_\perp \cdot oldsymbol{
abla} \Phi_0
ight|^2 \sum_j Z_j^2 rac{n_j}{T_j} d\mathbf{V}$$

Additional anisotropic term

In addition to present anisotropy effects on δW_{κ} , when f is anisotropic an additional term arises that is proportional ${}^{\cdot}\tilde{\mathbf{B}}_{\parallel}$:

$$\delta W_{\tilde{B}} = \sum_{j} \frac{1}{2} \int \int \langle HT_{j} \rangle^{*} \mu \frac{\tilde{\mathbf{B}}_{\parallel}}{B} \frac{\partial f_{j}}{\partial \mu} d^{3} \mathbf{v} d\mathbf{V}.$$

[B. Hu et al., Phys. Plasmas 12, 057301 (2005)]

Centrifugal destabilization

This fluid force term is usually neglected, but it is always destabilizing, and could be important if the plasma rotation Mach number is significant, or for alpha particles rotating at higher frequency $\sim \omega_{*\alpha}$.

(significant for NSTX in core, not edge)

$$\delta W_C = -rac{1}{2}\sum_j \int \boldsymbol{\xi}^{m{*}}_{\perp} \cdot \left[\widetilde{
ho} \mathbf{v_0} \cdot \mathbf{\nabla v_0}
ight] d\mathbf{V}$$

Other possibilities:

- Inclusion of plasma inertia term in the dispersion relation
- Effect of poloidal rotation on ω_{E} (small)
- Use of a Lorentz collisionality model instead of current ad-hoc inclusion of collisionality

$$C\left(\widetilde{f}
ight)=rac{1}{2}
u\Pi_{e}rac{\partial}{\partial\chi}\left(1-\chi
ight)^{2}rac{\partial\widetilde{f}}{\partial\chi}$$

Illustration of Bⁿ(θ , ϕ) on plasma surface from mmVALEN for ITER Scenario 4, $\beta_N = 3.92$

NSTX is Addressing Global Stability Needs Furthering Steady Operation of High Performance ST Plasmas

- RWM instability, observed at intermediate plasma rotation, correlates with kinetic stability theory
 - Theory of kinetic modifications to ideal stability may unify RWM stability results between devices
 - \Box ITER advanced scenario 4 requires EP stabilization at expected ω_{ϕ}
- □ n = 1 RWM feedback control combined with new β_N feedback control shows regulation of high β_N at varied plasma rotation levels
 - Compatible with plasma rotation control by non-resonant 3D fields
- □ Stronger non-resonant NTV braking observed at reduced ω_E
 - Theoretically expected (superbanana plateau regime)
- **D** New RWM state space controller sustains high β_N plasma
 - Potential for greater flexibility of RWM control coil placement for burning plasma devices
- Computed multi-mode RWM spectrum at high β_N shows significant amplitude in higher order modes