

Supported by

Resistive Wall Mode Stabilization and Plasma Rotation Damping Considerations for Maintaining High Beta Plasma Discharges in NSTX

College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U Old Dominion U ORNL **PPPL** PSI Princeton U Purdue U Sandia NL Think Tank, Inc. **UC Davis UC Irvine** UCLA UCSD **U** Colorado

U Marvland

U Rochester

U Wisconsin

U Washington

S.A. Sabbagh¹, J.W. Berkery¹, J.M. Bialek¹, R.E. Bell², S.P. Gerhardt², O.N. Katsuro-Hopkins¹, J.E. Menard², H. Reimerdes¹, R. Betti^{2,3}, L. Delgado-Aparicio², D.A. Gates², B. Hu³, B.P. LeBlanc², J. Manickam², D. Mastrovito², J.K. Park², Y.S. Park¹, K. Tritz⁴

¹Department of Applied Physics, Columbia University, NY, NY

²Plasma Physics Laboratory, Princeton University, Princeton, NJ

³University of Rochester, Rochester, NY

⁴Johns Hopkins University, Baltimore, MD

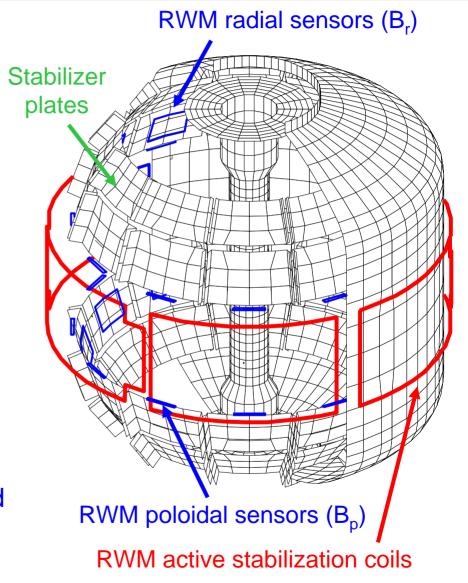
23rd IAEA Energy Fusion Conference October 11th – 16th, 2010 Daejeon, Korea

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kvoto U Kvushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST **POSTECH ASIPP** ENEA. Frascati CEA. Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep **U** Quebec

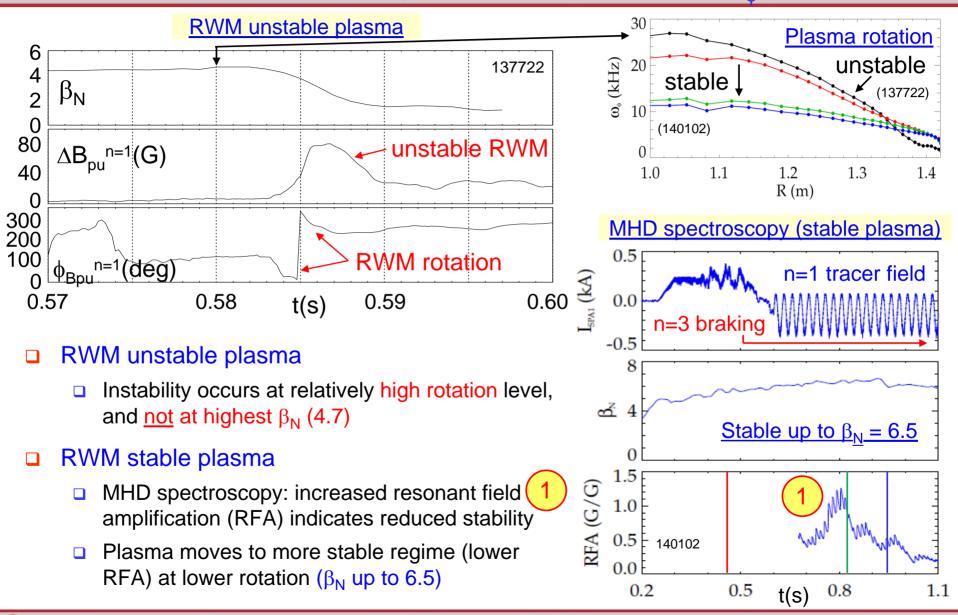
NSTX is Addressing Global Stability Needs for Maintaining Long-Pulse, High Performance Plasmas

Motivation

- Achieve high β_N with sufficient physics understanding to allow confident extrapolation to spherical torus applications (e.g. ST Component Test Facility, ST-Pilot plant, ST-DEMO)


 Papers: FTP/2-2
 FTP/2-3
 FTP/26-20
- \square Sustain target β_N of ST applications with margin to reduce risk
- Leverage unique ST operating regime to test physics models, apply to ITER

Physics Research Addressed


- Resistive wall mode (RWM) destabilization at high plasma rotation
- RWM active control advancements
- □ Combined control systems to maintain $<\beta_N>_{pulse}$ at varied ω_ϕ
- Physics of 3D fields to control plasma rotation
- Multi-mode RWM spectrum in high β_N plasmas

NSTX is a spherical torus equipped for passive and active global MHD control, application of 3D fields

- High beta, low aspect ratio
 - \blacksquare R = 0.86 m, A > 1.27
 - $I_p < 1.5 \text{ MA}, B_t = 5.5 \text{ kG}$
 - $\beta_t < 40\%, \ \beta_N < 7.4$
- Copper stabilizer plates for kink mode stabilization
- Midplane control coils
 - □ n = 1 3 field correction, magnetic braking of ω_{ϕ} by NTV
 - \square n = 1 RWM control
- Varied sensor combinations used for RWM feedback
 - 48 upper/lower B_p, B_r

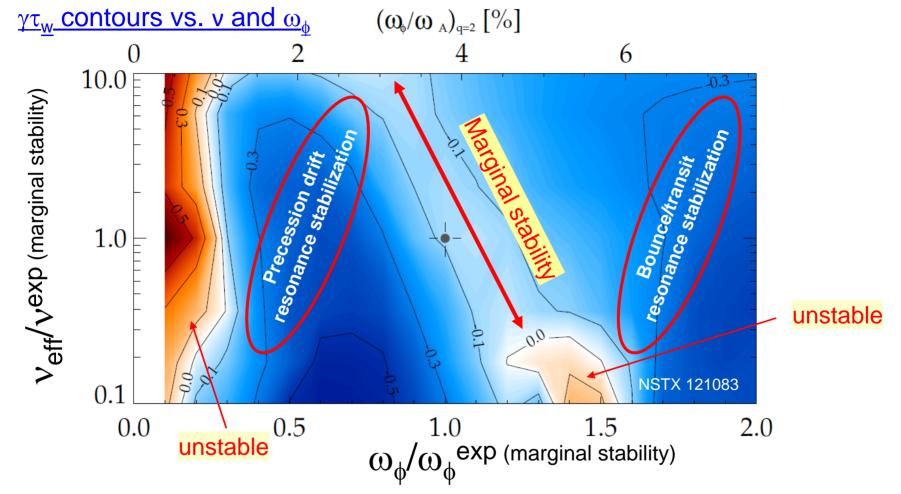
Low plasma rotation level ($\sim 1\% \ \omega_{Alfven}$) is insufficient to ensure RWM stability, which depends on $\omega_{\rm b}$ profile

Modification of Ideal Stability by Kinetic theory (MISK code) investigated to explain experimental RWM stabilization

- Reason: simple critical ω_{ϕ} threshold stability models do not fully describe RWM marginal stability in NSTX sontag, et al., Nucl. Fusion 47 (2007) 1005.
- Kinetic modification to ideal MHD growth rate
 - □ Trapped / circulating ions, trapped electrons, etc.
 - Energetic particle (EP) stabilization

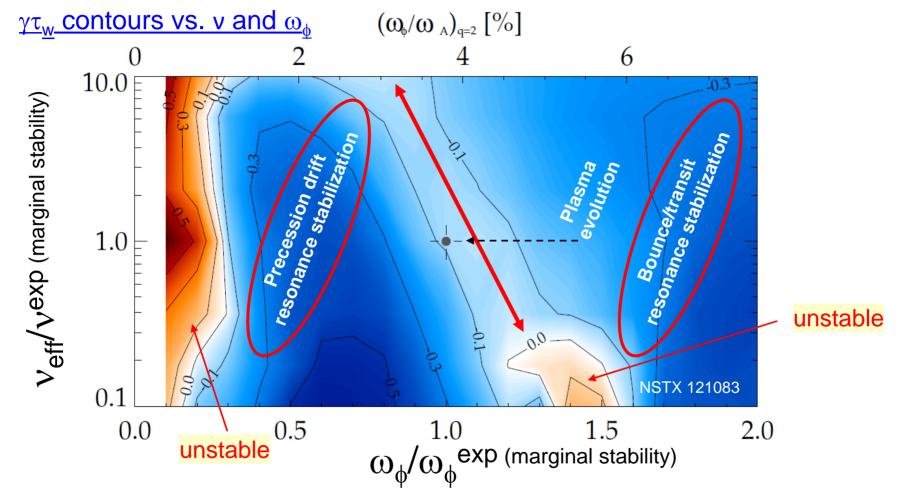
$$\gamma \tau_{_{W}} = -\frac{\delta W_{_{\infty}} + \delta W_{_{K}}}{\delta W_{_{b}} + \delta W_{_{K}}}$$

Hu and Betti, Phys. Rev. Lett **93** (2004) 105002.

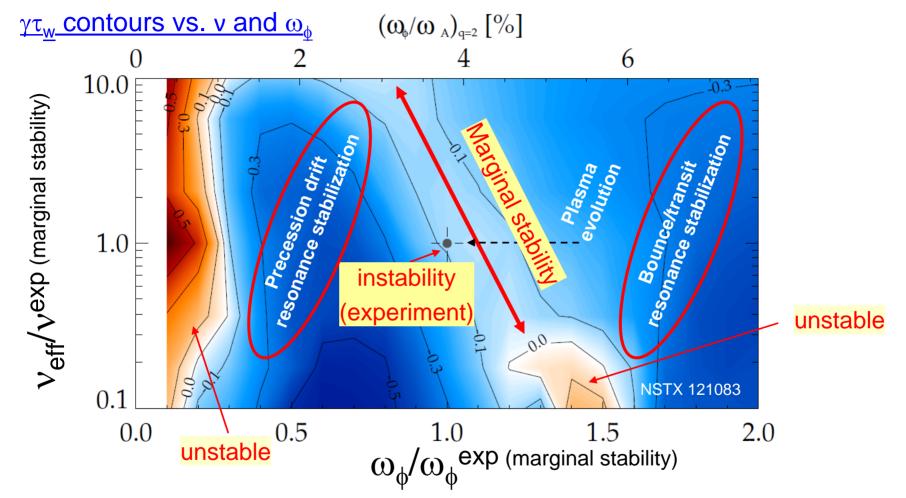

- Stability depends on
 - □ Integrated $\underline{\omega}_{\delta}$ profile: resonances in δW_{κ} (e.g. ion precession drift)
 - Particle <u>collisionality</u>, <u>EP fraction</u>

 $\underline{\omega_{\phi}}$ profile (enters through ExB frequency)

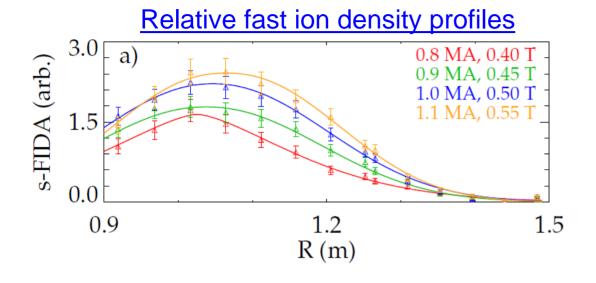
Trapped ion component of δW_{κ} (plasma integral)


$$\delta W_{K} \propto \int \left[\frac{\omega_{*_{N}} + (\hat{\varepsilon} - \frac{3}{2})\omega_{*_{T}} + \omega_{E} - \omega - i\gamma}{\langle \omega_{D} \rangle + l\omega_{b} - i\nu_{eff} + \omega_{E} - \omega - i\gamma} \right] \hat{\varepsilon}^{\frac{5}{2}} e^{-\hat{\varepsilon}} d\hat{\varepsilon} \qquad \leftarrow \text{Energy integral}$$
precession drift
bounce
collisionality

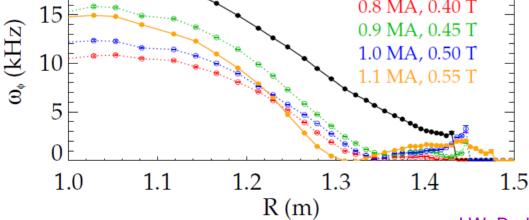
MISK calculations consistent with RWM destabilization at intermediate plasma rotation; stability altered by collisionality


Destabilization appears between precession drift resonance at low ω_{ϕ} , bounce/transit resonance at high ω_{ϕ} J.W. Berkery, et al., PRL 104 (2010) 035003 S.A. Sabbagh, et al., NF 50 (2010) 025020

MISK calculations consistent with RWM destabilization at intermediate plasma rotation; stability altered by collisionality

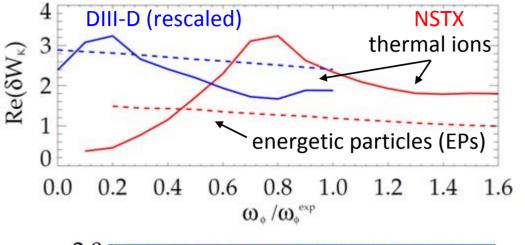

Destabilization appears between precession drift resonance at low ω_{ϕ} , bounce/transit resonance at high ω_{ϕ} J.W. Berkery, et al., PRL **104** (2010) 035003 S.A. Sabbagh, et al., NF **50** (2010) 025020

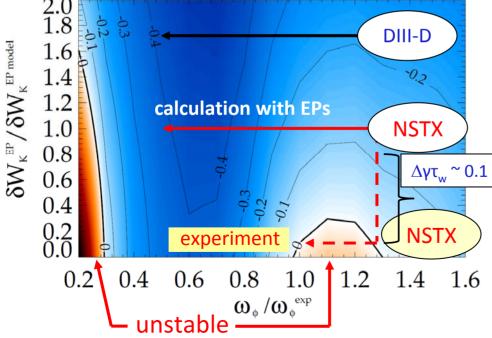

MISK calculations consistent with RWM destabilization at intermediate plasma rotation; stability altered by collisionality



- Destabilization appears between precession drift resonance at $low \omega_{\phi}$, bounce/transit resonance at high ω_{ϕ} J.W. Berkery, et al., PRL **104** (2010) 035003 S.A. Sabbagh, et al., NF **50** (2010) 025020

Rotation profile at RWM marginal stability altered by varying energetic particle content





- I_p, B_t altered keeping q
 fixed in experiment
- Fast ion density increases with increased I_p
 - □ Indicated by fast ion D_{α} diagnostic
 - □ Range of TRANSP β_{fast}/β_{tot} 17% 31%
- General reduction of RWM marginal $ω_φ$ profile as $I_ρ$ increased

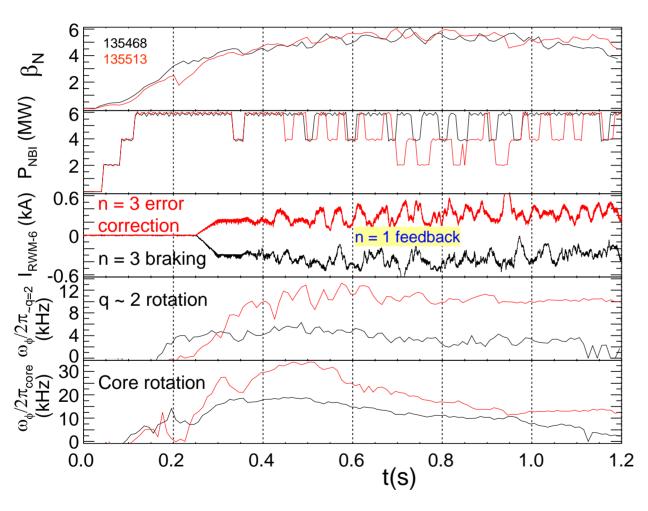
J.W. Berkery, et al., Phys. Plasmas 17 (2010) 082504

Model of kinetic modifications to ideal stability can unify RWM stability results between devices

■ NSTX

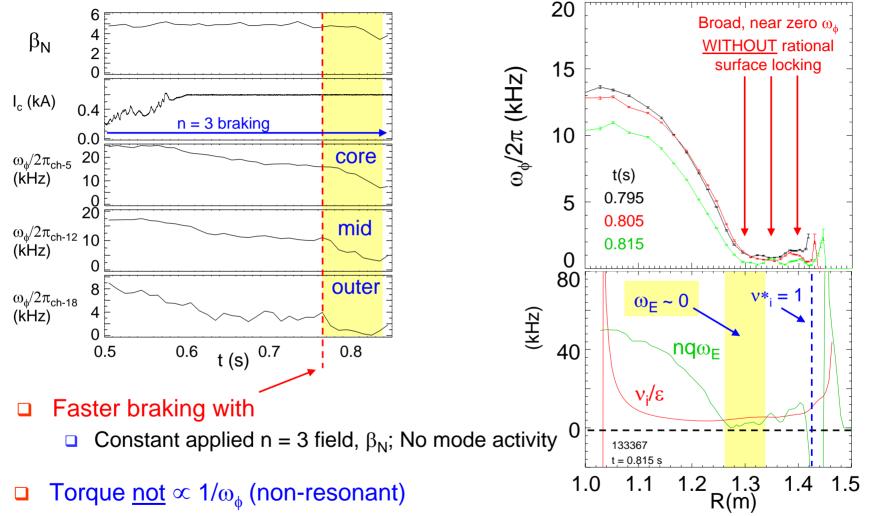
Less EP stability: RWM can cross marginal point as $ω_{\phi}$ is varied

DIII-D


- More EP stability (~ 2x NSTX): RWM stable at all $ω_{\phi}$
- RWM destabilized by events that reduce EP population

H. Reimerdes, et al., paper EXS/5-4

□ ITER (advanced scenario IV)

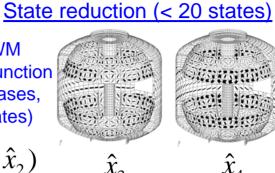

- RWM unstable at expected rotation
- □ Only marginally stabilized by alphas at $\beta_N = 3$ See poster (EXS/5-5)
- Stability overpredicted with EPs model development continues
 - □ Improve NBI anisotropic distribution
 - Examine effects originally thought small
 See poster (EXS/5-5)

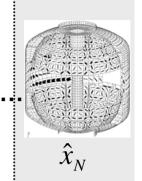
β_N feedback combined with n = 1 RWM control to reduce β_N fluctuations at varied plasma rotation levels

- Prelude to ω_{ϕ} control
 - Reduced $ω_φ$ by n = 3 braking is compatible with $β_N$ FB control S. Gerhardt, EXS/P2-08
- Steady β_N
 established over
 long pulse
 - independent of ω_φ
 over a large range
- Radial field sensors added to n = 1 feedback (2010)
 - Full sensor set further reduces n = 1 amplitude, improves control

Stronger braking with constant n = 3 applied field and β_N as ω_E reduced – accessing superbanana plateau NTV regime

- □ NTV satisfies low collisionality "1/ ν regime" criterion ($|nq\omega_E| < v_i/\epsilon$ and $v_i^* < 1$) Callen OV/4-3
- $lue{}$ Stronger braking expected at low ω_{E} (superbanana plateau regime)

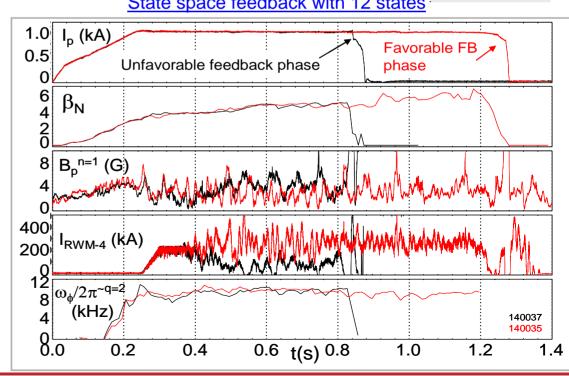

(K.C. Shaing et al., PPFC 51 (2009) 035009)


New RWM state space controller sustains high β_N plasma

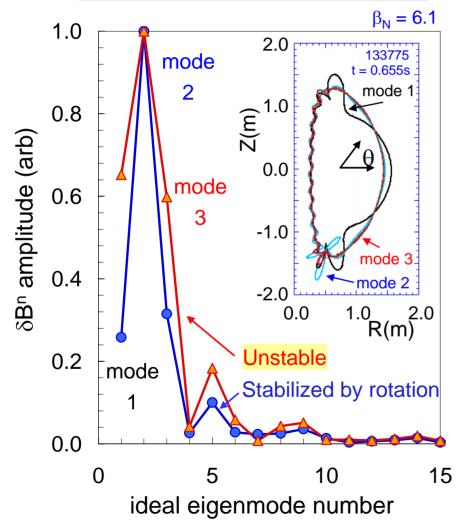
Full 3-D model ~3000+ states

Balancing transformation

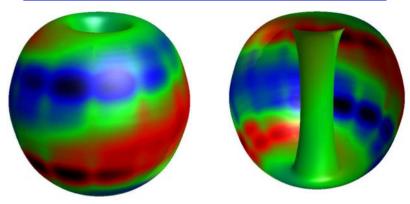
- **RWM** eigenfunction M (2 phases, 2 states)
 - (\hat{x}_1,\hat{x}_2)



truncate


State space feedback with 12 states

- device R, L, mutual inductances
- instability B field / plasma response
- modeled sensor response
- Controller can compensate for wall currents
 - Including mode-induced current
 - **Examined for ITER** Katsuro-Hopkins, et al., NF (2007) 1157
- Successful initial experiments
 - Suppressed disruption due to n = 1 applied error field
 - Best feedback phase produced long pulse, $\beta_N = 6.4$, $\beta_N/I_i = 13$



Multi-mode RWM computation shows 2^{nd} eigenmode component has dominant amplitude at high β_N in NSTX stabilizing structure

δBⁿ from wall, multi-mode response

NSTX unstable RWM

- Computed growth time consistent with experiment
- 2nd eigenmode ("divertor") has larger amplitude than ballooning eigenmode

lacksquare NSTX RWM stabilized by $\omega_{_{lackbox{\phi}}}$

- Ballooning eigenmode amplitude decreases relative to "divertor" mode
- Computed RWM rotation ~ 41 Hz, close to experimental value ~ 30 kHz

ITER scenario IV multi-mode spectrum

Significant spectrum for n = 1 and 2

See poster (EXS/5-5) for more detail

mmVALEN code

ITER Advanced Scenario IV: multi-mode RWM spectra computation shows significant ideal eigenfunction amplitude for several components

NSTX is Addressing Global Stability Needs Furthering Steady **Operation of High Performance Plasmas**

Implications for Physics addressed ITER advanced Future STs (NBI-driven, high ω_{ϕ}) scenarios (low ω_α) ω_{ϕ} profile Sufficient EP RWM instability observed at control stabilization intermediate ω_{ϕ} correlates with needed at low $\omega_{\scriptscriptstyle A}$ kinetic stability theory Sufficient EP stabilization Potential control n = 1 RWM, β_N feedback control Potential control at low $\omega_{\scriptscriptstyle \phi}$ if EP maintains high β_{N} at varied $\omega_{_{\! \varphi}}$ using compatibility stabilization $n = 3 \text{ NTV } \omega_{\phi}$ profile modification insufficient Further examine Stronger NTV braking at reduced ω_{F} ω_{ϕ} profile NTV at low ω_{\bullet} control impact More flexibility of More flexibility Initial success of RWM state space control coil of control coil controller at high β_N placement placement **Determine RWM Determine RWM** Multi-mode RWM physics spectrum

control impact

control impact

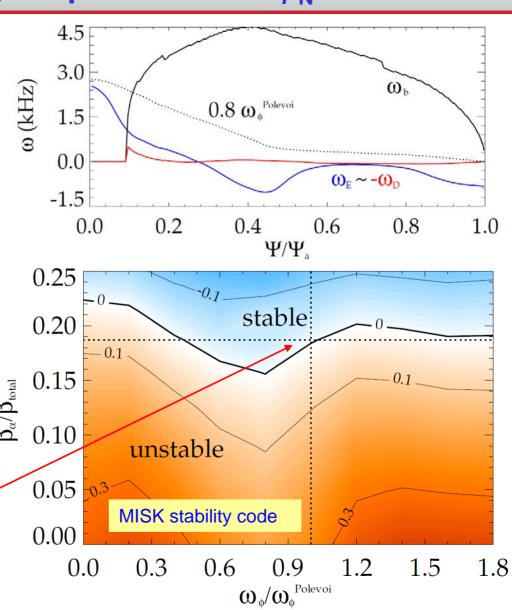
Additional Slides

NSTX is Addressing Global Stability Needs Furthering Steady Operation of High Performance Plasmas

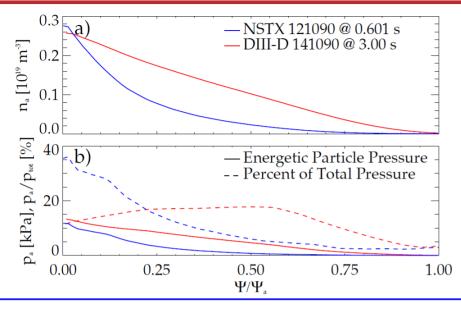
- RWM instability observed at intermediate plasma rotation correlates with kinetic stability theory
 - Theory of kinetic modifications to ideal stability may unify RWM stability results between devices
 - ITER advanced scenario 4 requires EP stabilization at expected ω_φ
- n = 1 RWM feedback control combined with new β_N feedback control shows regulation of high β_N at varied plasma rotation levels
 - Compatible with plasma rotation control by non-resonant 3D fields
- $\hfill\Box$ Stronger non-resonant NTV braking observed at reduced ω_{E}
 - Theoretically expected (superbanana plateau regime)
- $lue{}$ New RWM state space controller sustains high β_N plasma
 - Potential for greater flexibility of RWM control coil placement for burning plasma devices
- Computed multi-mode RWM spectrum at high β_N shows significant amplitude in higher order modes

ITER Advanced Scenario IV: RWM just reaches marginal stability by energetic particles with $\beta_N = 3$

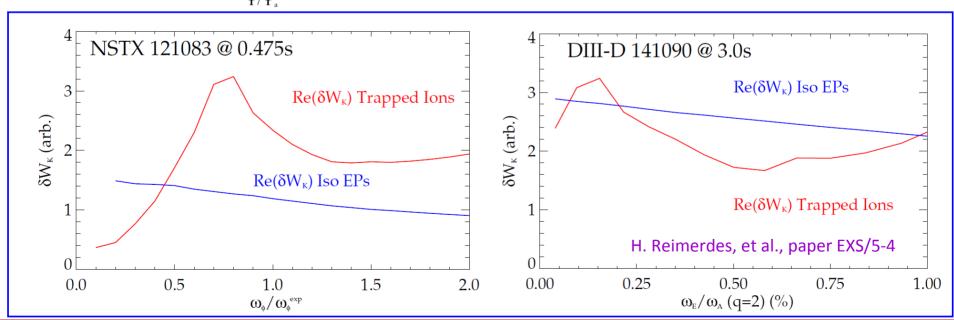
Equilibrium


- □ With β_N = 3 (20% above n = 1 no-wall limit)
- Plasma rotation profile linear in normalized poloidal flux

Plasma rotation effect


Stabilizing precession drift resonance weakly enhances stability near $\omega_{\phi} = 0.8 \ \omega_{\phi}^{Polevoi}$

Energetic particle (EP) effect


- Alpha particles are required for RWM stabilization at <u>all</u> ω_{ϕ}
- Near RWM marginal stability at ITER expected $\beta_{\alpha}/\beta_{total} = 0.19$ at $\omega_{\phi} = \omega_{\phi}^{Polevoi}$

Energetic particles are stabilizing to RWM; computed effect is smaller in NSTX when compared to DIII-D

- Smaller energetic particle (EP) fraction in NSTX
 - Less stability due to EPs
- Scaled δW_k from MISK shows larger stabilization effect due to EPs in DIII-D

Advancements in MISK stability model continue

Electrostatic effect

The electrostatic component of the perturbed distribution function contributes to δW . (expected to be small).

$$\delta W_{ar{\Phi}} = -rac{1}{2}\int e^2\left|ar{ar{\Phi}}+m{\xi}_{\perp}\cdotm{
abla}\Phi_0
ight|^2\sum_j Z_j^2rac{n_j}{T_j}d\mathbf{V}$$

[B. Hu et al., Phys. Plasmas 12, 057301 (2005)]

Centrifugal destabilization

This fluid force term is usually neglected, but it is always destabilizing, and could be important if the plasma rotation Mach number is significant, or for alpha particles rotating at higher frequency $\sim \omega_{*_{\alpha}}$. (significant for NSTX in core, not edge)

$$\delta W_C = -\frac{1}{2} \sum_j \int \boldsymbol{\xi}_{\perp}^* \cdot \left[\tilde{\rho} \mathbf{v_0} \cdot \boldsymbol{\nabla} \mathbf{v_0} \right] d\mathbf{V}$$

Additional anisotropic term

In addition to present anisotropy effects on δW_K , when f is anisotropic an additional term arises that is proportional \tilde{B}_{\parallel} :

$$\delta W_{ar{B}} = \sum_{j} rac{1}{2} \int \int \left\langle HT_{j}
ight
angle^{*} \mu rac{ar{\mathbf{B}}_{\parallel}}{B} rac{\partial f_{j}}{\partial \mu} d^{3}\mathbf{v} d\mathbf{V}.$$

Other possibilities:

- Inclusion of plasma inertia term in the dispersion relation
- Effect of poloidal rotation on $\omega_{\rm F}$ (small)
- Use of a Lorentz collisionality model instead of current ad-hoc inclusion of collisionality

$$C\left(ilde{f}
ight)=rac{1}{2}
u\Pi_{oldsymbol{arepsilon}}rac{\partial}{\partial\chi}\left(1-\chi
ight)^{2}rac{\partial ilde{f}}{\partial\chi}$$