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NSTX

Introduction
• Goal of High-Harmonic Fast-Wave (HHFW) ion cyclotron range of frequency research on NSTX is 

to maximize power coupled to plasma: 
• Understand and mitigate power loss outside last closed flux surface (LCFS): 

• Relevant to ITER

• NSTX capabilities: 
• Auxiliary heating system includes 7 MW NBI and 6 MW ICRF
• A complete set of standard diagnostics, and in particular fast-ion diagnostics like

fast-ion D-alpha FIDA [1]

• The physics basis of HHFW heating and a review of recent HHFW research are available 
elsewhere [2], [3]:

• Typically more than 5 ion-cyclotron resonances present within the plasma in NSTX

• Competition between two dominant absorption mechanisms inside the LCFS:
• Electron heating via Landau damping and transit-time magnetic pumping,
• Wave-field acceleration of NBI generated fast ions

[1] M. PODESTA, et al., Rev. Sci. Instr., 78, 10E521 (2008)
[2] M. ONO, Physics of  Plasmas, 2, (1995) 4075
[3] G. TAYLOR, et al., Physics of Plasmas, Vol. 17 (2010) 05611
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NSTX

HHFW Antenna Has Well Defined Spectrum Ideal for 
Controlling Deposition, CD Location & Direction

12 Antenna Straps

30 MHz RF Power Sources
5 Port
Cubes

Decoupler
Elements

B
IP

HHFW antenna extends toroidally 90

• Phase between adjacent straps (Δφ) 
easily adjusted from 0° to 180°
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NSTX

Edge Power Absorption and Dispersion

• Propagation onset, power dispersion:
• Radio–frequency (RF) evanescent wave exits antenna until reaching a region 

where the local electron density is at the critical level ("onset density") for 
fast-wave propagation perpendicular to the magnetic field. 

• Propagation onset typically occurs outside of the LCFS, resulting in excitation 
of surface waves [5]. Such losses can be reduced by having the “onset 
density” further away from the antenna.

• Edge power absorption:
• Edge ion heating by parametric decay instability (PDI) is another 

phenomenon reducing the power reaching the plasma within the LCFS [7]

[4] J.R. WILSON et al., Phys. Plasmas, 10, No. 5, (2003) 1733
[5] J.C. HOSEA, et al., Phys. Plasmas 15 (2008) 056104 
[6] D.M. MASTROVITO, et al., Rev. Sci. Instrum. 74 (2003) 5090
[7] T.BIEWER, et al, Phys. of Plasmas 12 (2005) 056108
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NSTX

Divertor Power Flux Increase during HHFW Heating

• Infrared measurements [6] 
indicate a significant amount of 
the antenna power redirected to 
divertor

• Heat flux reaching the divertor for 
two consecutive discharges, both 
with 2 MW NBI, but with the 
second having an additional 
2.6 MW HHFW heating. In the 
vicinity of R = 1m, the heat flux 
increases fivefold with RF power 
applied 

[6] D.M. Mastrovito, et al., Rev. Sci. Instrum. 74 (2003) 5090

5

• Divertor heat flux vs. major
radius (Preliminary calibration)

• Antenna set to k// = -8 m-1
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NSTX

RF Wave Accelerate Fast Ions in L-mode Plasma

• Pulsed 1 MW NBI injection 
at 65 kV

• Long HHFW 1 MW pulse at 
k// = -8 m-1

• HHFW power induces a 
cumulative tripling of 
neutron production, Sn
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NSTX

Measured Fast-ion Density Increase during HHFW 
Heating in L-mode Plasma

• Fast-ion D-alpha (FIDA) signal 
[10]

• Signal integrated over 30kV-
60kV energy range, is 
proportional to the density of 
these high-energy fast ions

• Near doubling and broadening 
of fast-ion density when HHFW 
is added to NBI [9]

[9] D. LIU, et al. Plasma Physics and Controlled Fusion, Vol. 52 
(2010) 025006

[10] M. PODESTA, et al., Radio Frequency Power in Plasmas, AIP 
Conf. Proc. 1187 (2009) 69-76
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NSTX

HHFW Heating of NBI-induced H-mode plasma

• In the past this task has proved challenging, with essentially 
no HHFW power reaching the plasma within the LCFS [11] 

• Recently, a sizeable amount of power coupled to the 
enclosed plasma, resulting in a significant increase in the 
total stored energy and in the neutron rate.

[11] B.P. LEBLANC, el al, Radio Frequency Power in Plasmas, AIP Conf. Proc. 787 (2005) 86
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NSTX

Compare Two Matched ELM-free H-mode 
Discharges NBI+HHFW vs. NBI

• IP: 0.9MA, TF: 0.55T

• NBI: 2MW, 90kV

• HHFW: 2MW, k//=13m-1

• Benign MHD activity in both 
plasmas

• MSE unavailable

• Times of interest (TOI) 
0.248s and 0.315s

9LeBlanc_BP_EXW/P7-12

TOI



NSTX

Broad Te Profile Increase with HHFW Heating of 
NBI-induced H-mode Plasma

LeBlanc_BP_EXW/P7-12

Prior to 
HHFW 
Heating

During 
HHFW 
Heating

• Identical Te and ne H-mode profiles prior to HHFW power onset

• Broad Te profile increase during HHFW heating, ne profile remains
unchanged. Plasma stayed in the H mode.

Thomson 
scattering
profiles
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NSTX

TRANSP Analyses of NBI+HHFW and NBI-only 
ELM-free  H-mode Discharges

11LeBlanc_BP_EXW/P7-12

• Good match for stored energy,
but underestimate neutron
production

• Good match for stored energy
and neutron production

NBI+HHFW NBI



NSTX

Estimate HHFW Power Fraction Absorbed within 
LCFS Based on the Electron Stored Energy

• Three TRANSP calculations of the electron stored energy: 

– (1) Analysis based on the experimental data for combined NBI and 
HHFW heating

– (2) Analysis based on the NBI-only experimental data

– (3) A predictive TRANSP/TORIC calculation 

• Electron thermal diffusivity, χe, from the NBI-only reference  discharge 

• Assume 100% of antenna power absorbed within LCFS

• Predict Te for the NBI+HHFW
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NSTX

Evolution of Electron Stored Energy Estimates

• WeX is the electron stored 
energy obtained from the 
experimental NBI+HHFW 
TRANSP analysis

• WeR corresponds to the 
reference NBI-only analysis

• WeP corresponds to the 
predictive calculation 
mentioned in previous slide.
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Unscaled  HHFW power trace



NSTX

Coupling to Enclosed Plasma 
Based on Electron Stored Energy 

• Power coupled to the 
enclosed plasma 

• PeC = fC × PeP, where the 
fraction, fC, of the captured 
antenna defined as

fC=(WeX-WeR)/(WeP-WeR)

• <fc>=0.53±0.07

• 1MW absorbed within 
LCFS

– 0.7MW  by electrons

– 0.3MW  by fast ions

14LeBlanc_BP_EXW/P7-12

PA: launched antenna power 
PeP: TORIC calculation of power
to electrons assuming 100% capture
With LCFS 



NSTX

CQL3D to Estimate Effects of Wave Interaction
with Fast Ions

• Currently TRANSP lacks the software to evolve self-
consistently the fast-ion energy distribution under the 
influence of the wave field

• CQL3D is a relativistic collisional, quasi-linear 3D code 
which solves a bounce-averaged Fokker-Planck equation

• CQL3D can be used to compute the wave effects on the fast 
ions and neutron production

• Using input data from TRANSP at a particular time of 
interest, CQL3D is “run to equilibrium” in order to estimate 
the neutron rate

• CQL3D offers two calculation options:
– A "no loss" option (NL), which assumes zero banana width orbits
– A "simple-banana-loss" calculation (SBL) 
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NSTX

CQL3D Predicts Significant Fast-ion Losses

Neutron Production (Sn)
• "no loss" (NL) exceeds Sn

measurement
• "simple-banana-loss" 

(SBL) is at lower limit of  
measurement error range
– For 1MW captured within 

LCFS, about 60% of the 
power to fast ions is lost 
compared to NL

• A first-order final-orbit width 
loss model will be 
implemented for CQL3D

16LeBlanc_BP_EXW/P7-12

HHFW power scan with CQL3D 



NSTX

FIDA Measurements for NBI+HHFW vs. NBI
No Fast-ion density change observed with HHFW in this case
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• FIDA density profiles at t=0.315 s
for, red, plasma with NBI+HHFW
heating and, black, reference 
NBI-only plasma

• Evolution at R=1.158m of FIDA
density for, red, plasma with 
NBI+HHFW and, black, reference
NBI-only plasma



NSTX

TRANSP Sn Estimate Depends on Equilibrium

• Equilibrium solvers LRDFIT 
and EFIT predict Sn within 
experimental bar

• EFIT’s current profile is 
more peaked 

– More current in the core 
region is conducive to better 
fast-ion confinement and 
higher neutron production. 

• Measurement of q profile 
(MSE) needed for future 
experiments
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NSTX

Moving Onset Density Layer away from Antenna 
Facilitated by Lithium Coating Pumping

• Onset density, nonset , for 
perpendicular fast-wave 
oscillation[5]

19

ω/2
//kBnonset ×∝

[5] J.C. HOSEA, et al., Phys. Plasmas 15 (2008) 056104 
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Wave onset occurs where
ne ≈ nonset, i.e. near R=1.52m

ne near antenna remains 
below nonset during 
HHFW pulse



NSTX

Conclusion

• HHFW Heating of L-mode plasma

– Near doubling of the density profile of the higher-energy fraction of the fast ions 
has been measured by FIDA

• HHFW heating of NBI-induced Elm-free H-mode plasma

– Te increases over most of the radial profile. 

– 1/2 of antenna power captured with the LCFS

• 2/3 of power inside LCFS absorbed by electrons

• 1/3 of power inside LCFS absorbed by fast-ions  

– Fast-ion diagnostics FIDA and NPA observed no changes during HHFW heating

• Edge physics effects 

– Improved core coupling partly attributed to first wall lithium coating, which keeps 
the ne< nonset in front of the antenna

– Infrared radiation measurements show local power flux on divertor plates 
reaches ~ 1 MW/m2 per MW of HHFW heating 
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