Dependences of the divertor and midplane heat flux widths in NSTX

Supported by

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD U Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

T.K. Gray^{1,2}, R. Maingi², A.G. McLean², V. Soukhanovskii³ and J-W Ahn²

¹Oak Ridge Institute for Science and Education (ORISE) ²Oak Ridge National Laboratory ³Lawrence Livermore National Laboratory

23rd IAEA Fusion Energy Conference Daejon, Republic of Korea • October 11 – 16th, 2010

U.S. DEPARTMENT OF

FNERGY

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP. Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Office of

Science

Introduction & Motivation

- Measurements of the divertor heat flux, q and the heat flux profile, λ_q are necessary for understanding thermal transport in the scrape-off layer of tokamak plasmas
- Heat loading on the divertor and plasma facing components (PFC) is also an engineering limit on the fusion reactor
 - High heat flux can also lead to PFC cracking, fatigue and subsequent impurity generation
 - Heat flux therefore limits PFC lifetime, and therefore reactor operational time between PFC replacement
- Spherical Tori (STs) are prone to large heat fluxes due to their compact design
- Part of the 2010 Joint Research Milestone (JRM) Understanding thermal transport in tokamak scrape-off layer plasmas

Overview of the National Spherical Torus eXperiment

R, a _{max}	0.8, 0.67 m
Aspect Ratio, A	1.27—1.6
Elongation, κ	1.6—3.0
Triangularity, δ	0.3—0.8
Torodial Field, B _t	0.3—0.55 T
Plasma Current, I _p	≤ 1.5 MA
Auxiliary Heating:	
NBI (100 kV)	≤ 7.4 MW
RF (30 MHz)	≤ 6 MW
Central Temperature	1—6 keV
Central Density	≤ 1.2(10) ²⁰ m ⁻³

NSTX utilizes evaporative lithium position on Graphite tiles as the primary plasma facing surface

- NSTX began the FY10 run campaign April 1st, 2010
- Lithium is applied between shots via high temperature lithium evaporators (LiTERs) onto graphite PFCs
 - No Boronization (starting with the FY10 run campaign)
 - No glow discharge cleaning (GDC) between shots
 - Deposit between 200 800 mg / shot
 - 200 mg is typical
- Addition of a toroidal, liquid lithium
 divertor (LLD) in FY10

Upgraded NSTX is expected to be online in FY2014

- Doubling of neutral beam heating power to 15 MW
- Will represent a significant increase in expected power deposited onto the divertor
- Techniques to handle the high power densities in NSTX-U are required

NSTX-U Operating Parameters		
Plasma Current, I _p	≤ 2 MA	
Toroidal Field, B _t	≤ 1 T	
Heating Power, P _{heat}	15 MW (NBI) 5 MW (RF)	
Pulse Length	≤ 5 s	
P/R, R/A	20 MW/m, 0.4 MW/m ²	

6

ORNL IR Cameras currently installed on NSTX

Determine dependence of λ_q^{mid} on external parameters from NSTX data

- All data is time averaged over ELMs and before lithium coatings were applied
- IR thermography measures surface temperature, which is used to estimate heat flux profile $q_{div}^{out}(\mathbf{r},\mathbf{t})$ and calculate divertor power loading: $P_{div}^{out} = \int_{R_{min}}^{R_{max}} 2\pi R_{div}^{out} q_{div}^{out} dr$
- Define characteristic divertor heat flux scale length, $\lambda^{out}_{q,div}$ [Loarte 1999]: $\lambda^{out}_{q,div} = P^{out}_{div} / (2\pi R^{out}_{div,peak} q^{out}_{div,peak})$
- Assume $\lambda^{out}_{q,div}$ related to characteristic midplane scale length through flux expansion, f_{exp} such that:

$$\lambda_q^{mid} = \lambda_{q,div}^{out} / f_{exp}, \text{ where } f_{exp} \equiv \frac{R_{mid} B_{\theta}^{mid}}{R_{div} B_{\theta}^{div}}$$

$$\therefore \quad q_{div,peak}^{out} = P_{div}^{out} / \left(2\pi R_{div,peak}^{out} f_{exp} \lambda_q^{mid} \right) \text{ with } \lambda_q^{mid} = f(I_p, P_{loss}, B_t, f_{exp})$$

Divertor peak heat flux evolves during a discharge

I_p flat-top at 0.25 sec

- L-H transition at 0.13 sec
- Stored energy usually flat-tops after I_p flat-top
- Density ramps throughout the discharge (large d_r^{sep}, small ELMs)
- Outer divertor heat flux peaks when W_{MHD} flat-tops
 - q_{div} rolls over as density rises
- Total outer divertor power is relatively constant
 - Heat flux profile broadens
- Data is taken over 100-200 msafter W_{MHD} flattens Should be a conservative
- projection for NSTX-U

9

Peak heat flux decreases inversely with flux expansion with roughly constant λ_q^{mid}

- q_{div,peak} decreases as flux expansion increases
- λ_{a}^{div} broadens with flux expansion
 - Effectively increasing the plasma wetted area of the divertor
- λ_{α}^{mid} stays approximately constant during the scan
 - Decreases by 20% over a factor 4—5 scan of f_{exp}

Heat flux width λ_q^{mid} is largely independent of P_{loss} for attached plasmas

- Peak divertor heat flux increases with P_{loss}
- Apparent change in slope near
 P_{loss} = 4 MW in these conditions
 - Divertor transitions from a radiative/ detached divertor to an attached divertor
 - Similar to previous experiments suggesting a radiative detached divertor at low P_{loss} [Maingi 2007]
- λ_q^{mid} relatively independent of P_{loss} in high heat flux/attached regime

 $-P_{loss} > 4 MW$

23rd IAEA Fusion Energy Conference (Gray – EXD/P3-13)

Changes in B_t(0) don't appear to effect divertor heat flux profiles

- Preliminary measurements from a scan of toroidal magnetic field, B_t(0) appear to have minimal impact on the heat flux footprint
 - All other parameters were kept constant
 - Limited ranges of B_t are accessible in NSTX
- Suggestions that L_{||} does not have a large impact on the divertor profiles

Heat flux width, λ_q^{mid} contracts with I_p

- Combined data from dedicated I_p scans in low δ and high δ discharges
 - Different P_{NBI} and f_{exp} , but previous slides shows no P_{loss} or f_{exp} effect on λ_q^{mid}
 - I_p dependence also in DIII-D, JET
 - q_{95} , L_{II} re varied (constant B_T)

NSTX SCAK

Previous H-mode scalings over predict the measured λ_{α}^{mid}

Resultant divertor heat flux profile is narrowed with use of lithium coatings

 Appears consistent across I_p and P_{NBI} scans

- For the discharge with lithium, the fast, 2 color IR camera is used
 - Frames are averaged together to yield a similar integration time as the slow, single color IR camera

Narrowing of the heat flux profile appears with 2 color IRTV camera

- Confirms earlier trends with single color, IRTV system [Gray 2010]
- Not simply an effect of changing surface emissivity
- Believed due to the elimination of small type V ELMs

Experiments on NSTX have successfully mapped out the behavior of the divertor heat flux with many engineering parameters

- By magnetically mapping the divertor heat flux profile, λ_q^{div} to the midplane, it's dependencies on heating power and flux expansion are eliminated
 - Yielding only $\lambda_q^{mid} \approx f(I_p)$
- λ_q^{mid} contracts strongly with increasing plasma current
 - This has been observed on DIII-D and JET as well
- Magnetic flux expansion appears to be a viable method to spread the heat flux out on the divertor
- Implications for NSTX-U at full design capabilities of $I_p = 2$ MA and $P_{heat} = 10$ MW are:
 - $q_{div, peak} = 24 \text{ MW/m}^2$, $\lambda_q^{mid} \sim 3 \text{ mm with } f_{exp} = 30$
 - Operations with a large magnetic flux expansion will be necessary to mitigate the expected large heat fluxes
 - Or operating with a detached divertor via divertor gas puffing will be necessary
- The full effect of thin lithium coatings is still being explored, but initial results show a further contraction of $\lambda_q^{\ div}$ that is not yet understood

Future experiments and data analysis

- Measured I_p , P_{heat} , δ_r^{sep} , n_e , B_t dependences on heat flux profile with lithium using the new 2 color IR Camera
 - More reliable estimate of heat flux with lithium thin films due to the low emissivity of lithium
 - Determine how λ_{q}^{mid} scales with I_{p} in lithiated discharges
- Further development of snowflake divertor and magnetic flux expansion to mitigate heat flux
 - see Poster EXD/3-32: V. Soukhanovskii, "Snowflake divertor configuration in NSTX" for more information
- Effect of 3D magnetic fields on the heat flux profile
 - See Poster EXD/P3-01: J-W Ahn, "Effect of non-axisymmetric magnetic perturbations on divertor heat and particle flux profiles"
- Assess replacing lower inboard divertor C tiles with Mo
 - Mo offers improved chemical compatibility with evaporative lithium coatings
 - Metal walls are more relevant to fusion reactor scenarios

References

[Bell 2009]

M.G. Bell, et.al. Plasma Phys. Control Fusion. 51(12) (2009) 124054

- [Gray 2010] T.K. Gray, *et al.* J. Nucl Mater. In Review (2010)
- [Kugel 2008] H. Kugel, *et al.* Phys. Plasmas. **15** (2008) 056118
- [Kirnev 2007] G. Kirnev, et al. Plasma Phys. Control. Fusion. 49 (2007) 689-701
- [Loarte 1999] A. Loarte, et al. J. Nucl. Mater. **266-269** (1999) 587-592
- [Maingi 2003] R. Maingi, et al. J. Nucl, Mater. **313-316** (2003) 1005-1009
- [Maingi 2007] R. Maingi, et al. J. Nucl. Mater. **363-365** (2007) 196–200
- [Maingi 2009] R. Maingi, T. Osborne, et al. Phys. Rev. Lett. **103**:7 (2009) 075001
- [McLean 2010] A.G. McLean, et al. Rev. Sci. Instr. Submitted (2010)
- [Menard 2010] J.E. Menard, *et al.* Proceedings of the 37th EPS Conference on Plasma Physics (2010)
 - T.K. Gray is supported under an appointment to the U.S. D.O.E. Fusion Energy Postdoctoral Research Program administered by the Oak Ridge Institute for Science and Education under contract number DE-AC05-06OR23100 between the U.S. D.O.E. and Oak Ridge Associated Universities.

This work was funded by the US Department of Energy contract numbers DE-AC05-000R22725, DE-AC52-07NA27344, and DE-AC02-09CH11466

Request for Reprints

A two-color infrared imaging adaptor for the fast IR camera on NSTX [6]

- Use of the LLD in NSTX will make assumptions of high surface emissivity (applicable to graphite) inaccurate
 - Complications include: Surface coating changes in real time during plasma shots, emissivity changes due to H-absorption in Li, reflections from Li surface, deposition of Li on C surfaces, erosion/transport of Li and C
- Two-color camera measures temperature based on the ratio of integrated IR emission in two IR bands, not single band intensity
- Image split into medium wavelength IR (4-6 μm) and long-wavelength IR (7-10 μm) using a dichroic beamsplitter, filtered with bandpass filters, projected side-by-side into the NSTX fast IR camera (1.6 kHz full frame)

Calibration and physics application of two-color IR

- Calibration accomplished *ex*situ using a 0-750°C blackbody source
 - Useful, low error LWIR/MWIR ratio from ~100-600°C
- Additional in-situ calibration during heating of LLD plates from 0-320°C
 - Shows extended useful range due to losses in MWIR channel
- True radial view of NSTX
 lower floor
 - View of inner divertor (graphite),
 CHI gap, and LLD plates

