Finite Orbit Monte-Carlo Simulation of ICRF Heating Scenarios In DIII-D, NSTX, KSTAR And ITER

M. Choi

In collaboration with D.L. Green, L. Berry (ORNL) E.F. Jaeger (XCEL) V.S. Chan, L.L. Lao, R.I. Pinsker (GA) W.W. Heidbrink, C.M. Muscatello (UCI) D. Liu (Wisconsin-Medison) R.W. Harvey (CompX) S.H. Kim (KAERI) P. Bonoli (MIT) and RF-SciDAC team

Presented at 23rd IAEA Fusion Energy Conference Daejon, Korea

October 11-16, 2010

Outline

- With no ICRH, simulation reproduces spectra and spatial profile of measured FIDA signals (NSTX)
- With ICRH, simulation reproduces spectra with slightly enhanced outward radial shifts (NSTX)
- Qualitative agreements are obtained in spectra and spatial profile with ICRH (DIII-D)
- Finite orbit effect may significantly modify fast ion distribution in ITER and KSTAR, depending on applied ICRF power density

Zero-Orbit Simulation Does Not Reproduce Outward Shifts of Measured FIDA Signals In DIII-D

- Qualitative agreements in spectra of FIDA signals and neutron enhancement
- Similar discrepancy in NSTX HHFW discharges (D. Liu, PPCF 52 (2010))

Fast Ions Move Across Magnetic Flux Surfaces Due to Non-Zero Drift Orbit Width

Can non-zero drift orbit resolve this discrepancy?

For This Purpose, ORBIT-RF Is Coupled With AORSA In A Self-Consistent Way (RF SciDAC)

GENERAL ATOMICS

133-09/MC

ICRF and Collision Models Implemented In ORBIT-RF

• Stochastic quasi-linear perpendicular heating

$$\left\langle \Delta \mu \right\rangle = \frac{1}{4} \frac{\pi q^2 l^2 \Omega^2}{\mu \omega^2 B_0} K \left| E_+ \right|^2 \times \left[\left| J_{l-1} + e^{2i\theta_k} \frac{E_-}{E_+} J_{l+1} \right|^2 + \mu \left\{ 2 \left(J_{l-1} + e^{2i\theta_k} \frac{E_-}{E_+} J_{l+1} \right) \left(\frac{\partial J_{l-1}}{\partial \mu} + e^{2i\theta_k} \frac{E_-}{E_+} \frac{\partial J_{l+1}}{\partial \mu} \right) \right\} \right] \delta(w_l)$$

S.C. Chiu, POP 7 (2000)

- **Coulomb collisions** $\Delta E_{n} = -2E_{0}\Delta \tau \left(\frac{m_{a}}{m_{a} + m_{b}}v_{s} - \frac{5}{2}v_{//} - E_{0}\frac{\partial v_{//}}{\partial K}\Big|_{K=K_{0}}\right) \pm 2K_{0}\sqrt{v_{//}\Delta \tau} \quad \text{O.A. Shyshkin ,35^{th} EPS(2008)}$ $\Delta \lambda = -\lambda \gamma_{\perp}\Delta \tau \pm \sqrt{(I - \lambda^{2})\gamma_{\perp}\Delta \tau} \quad \text{Phys. Vade Mecum, Ed. H. L. Anderson (1981)}$
- A single $k_{//}=N_{\varphi}/R$ (Upshift of $k_{//}$ ignored)
- k_{\perp} from cold plasma dispersion relation
- $k_{\perp} = k_x \rightarrow e^{2i\theta k} = 1$
- Axisymmetric equilibrium (no MHD)

FIDA Provides a Comprehensive Tool to Measure Fast lons Spectra and Spatial Profile

• DIII-D FIDA spectroscopy

Key Results

- Extensive simulations reasonably reproduce neutron enhancement, spectra and outward radial shifts of measured FIDA signals in DIII-D and NSTX moderate to high harmonic FW heating discharges
- Preliminary results in ITER and KSTAR suggest that non zero orbit effect may also significantly modify fast ion distribution in velocity space, depending on applied ICRF power density

Increased Neutron Rates During HHFW Indicate Strong Absorption of ICRF Waves By Beam Fast Ions

NSTX HHFW discharges #128739 - #128742

- Beam ion **Deuterium**
- Beam injection energy 65 keV
- P P_{NB} 1 MW
- Tangency radius 0.59 m
- P_{RF} **1.1 MW**
- ICRF wave frequency 30 MHz
 3rd to 11th resonance layers
 (8th resonance layer near the magnetic axis)

Good Agreements Are Obtained in Spatial Profile and Spectra with No ICRF

NSTX NB heating discharge #128742

Simulation With ICRH Predicts Slightly Enhanced Outward Shifts

NSTX NB+ICRF heating discharge #128739

Strong Absorption of ICRF Waves By Beam Fast Ions Is Also Observed In DIII-D

DIII-D 5th harmonic FW experiment #122993

Neutrons

Time (s)

2

FW acceleration

3

- Beam ion **Deuterium**
- Beam injection energy 80 keV
- P_{NB} **1 MW**
- Tangency radius 0.59m
- P_{RF} **1 MW**
- ICRF wave frequency 60MHz
 4th to 6th resonance layers
 (5th resonance layer near the magnetic axis)

1

Qualitative Agreements Are Obtained in Spectra and Spatial Profile With ICRH

DIIID NB+ICRF heating discharge #122993

KSTAR : Finite Orbit Effect May Significantly Modify Distribution, Depending On ICRF Power Density

- H (10%) minority fundamental harmonic heating
- $n_{\rm e}(0)$ 6.7×10¹³ cm⁻³, $T_{\rm e}(0)$ 2 keV, $T_{\rm D}(0)$ 2 keV, $T_{\rm H}(0)$ 10 keV $f_{\rm ICRF}$ 45 MHz n_{ϕ} 19

GENERAL

ITER : With P_{ICRF}= 20 MW, Non-Zero Orbit Effect Appears to Average Out Anisotropic Distribution

- D(10%) minority fundamental harmonic heating scenario
- $n_{e}(0)$: **7.3×10¹³ cm⁻³**, $T_{e}(0)$: **24 keV**, $T_{T}(0)$: **25 keV**, $T_{D}(0)$: **25 keV**
- $f_{\rm ICRF}$: 40 MHz $P_{\rm ICRF}$: 20 MW n_{φ} : -35

ITER : Without Drift Terms, Anisotropic Feature of Fast Ion Distribution Is Recovered

• D(10%) minority fundamental harmonic heating

Summary

- With no ICRH, simulation reproduces spectra and spatial profile of measured FIDA signals (NSTX)
- With ICRH, simulation reproduces spectra with slightly enhanced outward radial shifts (NSTX)
- Qualitative agreements are obtained in spectra and spatial profile with ICRH (DIII-D)
- Finite orbit effect may significantly modify fast ion distribution in ITER and KSTAR, depending on applied ICRF power density

