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Abstract
The National Spherical Torus Experiment (NSTX) routinely operates 
with neutral beam injection as the primary system for heating and 
current drive. The resulting fast ion population is super-Alfvénic, with 
velocities 1 < vfast/vAlfvén < 5 and normalized Larmor radius comparable 
to that of alphas in future reactors. Fast ions provides a strong drive for 
toroidicity-induced Alfvén eigenmodes (TAEs) with toroidal mode 
number n = 2−8 and frequency 60 < f < 250 kHz. As the discharge 
evolves, the fast ion population builds up and TAEs exhibit increasing 
bursts in amplitude and down-chirps in frequency, which eventually lead 
to a so-called TAE avalanche. Avalanches cause large (up to ~30%) 
losses over <1ms, as inferred from the neutron rate and other fast fast 
ion diagnostics (FIDA, sFLIP, NPA). The increased fast ion losses 
correlate with a stronger activity in the TAE band. In addition, a n = 1 
mode with frequency well below the TAE gap appears in the Fourier 
spectrum of magnetic fluctuations during avalanche events. The non-
linear coupling between modes, which correlates with an enhanced fast 
ion transport during avalanches, is investigated.

Work supported by U.S. DOE contracts DE-AC02-09CH11466, DE-FG02-06ER54867 and DE-FG02-99ER54527
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Bursting toroidicity-induced Alfvén eigenmodes 
(TAEs) can lead to enhanced fast-ion transport

•  Multiple TAEs can be simultaneously destabilized
–  Possible overlap of many resonances in phase space
–  Non-linear development into “TAE avalanches”

•  Must control/limit TAEs in future reactors (ITER, STs)
-  Need to understand the causes of bursting TAE behavior
-  Need to improve predictive capability
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"NSTX data (Colors indicate different shots)"

NOVA + ORBIT simulation"
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NSTX parameters

This work:
Focus on TAEs in L-mode plasma

Center-stack limited
Deuterium plasma

Btor=0.55 T, Ip=0.7-0.9 MA

Major radius  0.85 m
Aspect ratio  1.3
Elongation  2.7
Triangularity  0.8
Plasma current ~1 MA
Toroidal field <0.6 T
Pulse length  <2 s
3 Neutral Beam sources
PNBI≤ 6 MW, Einjection ≤ 95 keV

  1 <vfast/vAlfven < 5
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Mode activity and fast ion diagnostics on NSTX

FIDA range

collection optics
sightlines

•  Mirnov coils"
–  Magnetic fluctuations up to 2.5 MHz"

•  Multi-channel reflectometer"
-  Mode structure (L-mode)"

FFT analysis complemented by analysis in time 
domain to study mode dynamics over short time scale

•  Fast Ion D-Alpha (FIDA) system
–  Fast ion profile and spectrum 

through active charge-exchange 
recombination spectroscopy

–  Weighted toward small pitch (perp. 
component) 

•  Neutron rate, NPA, sFLIP

Neutral 
Beam

shot#135404, t=320 ms
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Experimental scenario :  
PNB<3MW,  ne~3x1019m-3, Ti~Te=1-1.5keV
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•  NB-heated, L-mode 
plasmas

–  Plasma limited on center-stack

–  NB power and timing varied to 
affect mode stability

–  Plasma profiles evolving in time

–  Reversed-shear q profile

–  Safety factor evolution 
reconstructed from four similar 
discharges through LRDFIT code 
constrained by MSE data
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TAEs with low toroidal mode number (n=2→7) 
are observed, with dominant n=2-4 modes
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•  Modes show more bursting character as discharge evolves"
-  NB power increases, fast ion population builds up"

•  Usually, each mode chirps independently of the others..."
•  ... but, eventually, avalanches occur:"

-  Modes lock on similar dynamic, multiple TAEs involved"
-  Drop in neutron rate, FIDA"

n=3 - frequent, “weak” chirp"

n=3 - larger chirps, period increases"

PNB=1.3 MW" PNB=2.9 MW"

t=328.2 ms"

modes have broad radial structure"

(reflectometer data)"
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No detectable fast ion losses are observed 
during weakly bursting/chirping phase

•  Statistical average over ~20 events (~10ms)
•  No clear evidence of losses from neutrons, FIDA

–  Does not exclude “continuous” (non-bursting) losses

n=2"
n=3"
n=4"

Fourier!
analysis!

time domain! time domain!

sh#135388!

n=3"

n=2"

n=4"
n=4" n=3 Mode!

amplitude!
neutrons variation!

Mode!
frequency!

spread between events"
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Up to ~30% of fast ions can be lost  
during a single TAE avalanche

•  Fast ion density (FIDA) 
drops over most of 
minor radius

•  Loss results in a 
relaxation of the radial 
gradient → drive for 
TAEs is reduced

•  Comparable losses 
estimated from FIDA 
and neutron rate

•  Losses increase with 
(total) mode amplitude
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Similar features are observed in L- and H-mode 
plasmas and during combined NB+RF : robust dynamics

•  Example: H-mode discharges with NB and NB+RF heating
–  Different profiles with respect to L-mode
–  Higher safety factor than for L-mode discharges
–  Reversed shear in both L- and H-mode

sh#134934, NB+RF injection!
t=310 ms"

L-mode"

H-mode"
H-mode"
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•  fn = 2-6  consistent with:"

On average, TAE frequencies are consistent with 
a common frequency in the plasma frame

FFT window 1.3ms!

lab frame" plasma frame" shift from"
plasma rotation"

Light symbols: time-domain"
Dark symbols: FFT"

shot#135414"

•  Valid for time scales >1 ms"
•  In general, each mode show a 

different sub-millisecond dynamic..."
•  ...except during large bursts:"

-  Doppler shift only slightly changed"
-  Chirp mainly due to decrease in"
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Understanding TAE dynamic requires detailed 
knowledge of fast ion drive  

rot. shear!

rotation!

max grad(nf)!

R @!

•  Modesʼ location, "       , obtained by matching  
with measured rotation profile:"

• Correlation between
-  Mode location
-  Max rotation shear
-  Steepest fast ion gradient

Coupling through common 
“source term”, i.e. NB injection"
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Effects of TAE drive are key factor in 
determining the observed bursting dynamics

•  Bursting dynamics 
is preserved when 
drive," " "and shear 
locations separate"
•  TAEs respond 
quickly to notches 
in NB, RF power
•  NB alone is not 
enough here to 
drive TAEs unstable

w/ RF!

w/o RF!

TAE amplitude (rms)!
PNB [MW] ,  PRF    [MW]!

rotation"

rotation"



Non-linear TAE dynamics in NSTX (M. Podestà) IAEA-FEC, Oct. 2010, Daejeon (KR)

Bicoherence suggests stronger coupling 
at play during large bursts

•  High bicoherence >70% measured during burst
-  Average over 11 Mirnov coils distributed toroidally over 360o

-  Indicative of sum/difference interactions between modes
-  Both TAEs and low-frequency modes participate
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Simple model based on quadratic interactions can be 
used to investigate coupling between TAEs

Right-hand side filtered around frequency "

Modes must satisfy matching conditions "

is the coupling coefficient"

In practice:"
-  Real signals sn1, sn2, sn3 measured for each possible triplet, e.g. from 

Mirnov coils"
-  “Reconstruct” sn3 → sn3,rec from measured sn1, sn2"
-  Compare measured and reconstructed sn3"
-  Frequency match must be verified in the plasma frame:"

-  Rotation profile and location of each mode must be accurately known "

.! .!
.!

sn2 → sn2* (complex conjugate) for difference interaction"
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New modes appear in the spectrum above/
below TAE range during large bursts

•  Modes can be classified into three groups
-  Discriminants: frequency, temporal evolution

Toroidal mode structure vs. 
time and mode number from 
11 Mirnov coils

-  Note regions of constructive/
destructive overlap between 
“primary” TAEs

-  Shown are n=1, n=3, n=4

High-frequency band; only appears 
during bursts"

“Primary” TAEs; observed during most of the 
time interval of interest"

Low-frequency band; appears during large 
bursts only? Masked by other MHD modes?"

n=4"
n=3"

n=1"

•  Picture consistent with primary TAEs
-  coupling to each other
-  generating secondary modes through sum/difference with Δn=1

shot#135414"
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Good agreement with quadratic interactions’ model: 
amplitude evolution and frequency matching

•  “Reconstructed” n=1 mode agrees with measured one
-  n=1 mode fades away when either amplitude or frequency matching 
vanishes
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Mode number matching condition

•  “Reconstructed” toroidal structure of n=1 mode also agrees with 
measured one

-  Phase shift of 180 degrees, as expected for “difference” interaction (complex 
conjugate term)

- Symbols: rms mode amplitude 
data from 11 Mirnov coils"
-  Solid lines: fit for a given n (n=1 
here)"
-  Dashed line: unit circle (zero-
amplitude reference)"
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Phase matching condition is transiently verified 
during large bursts

•  Phase resulting from quadratic interaction is important!
-  n=1 mode fades away ⇔ phase deviates from 180 degrees

-  “Single mode” dynamic, with each mode following its on chirp/burst 
cycle, is effective in reducing efficiency of quadratic interactions

-  The result is a “semi-cahotic” scenario, with small bursts (single 
mode) and occasional large bursts (multi-mode avalanches)
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Summary

•  TAE bursts can cause large, intermittent fast ion 
transport
•  Bursting TAE regime is “robust” against small 
variations of plasma parameters

-  L-mode vs. H-mode, NB only, NB+RF, ... : all show similar features 
•  Non-linearities occur in both single-mode and multi-
mode (avalanching) TAE dynamic

- Only avalanches seem to cause significant fast ion losses

•  More experiments planned for near term
–  Systematic study of TAEs (and avalanches) in H-mode
–  Comparison with M3D-K code planned; plasma rotation included
–  Improve “linear” analysis (NOVA-K + ORBIT)


