Pedestal Characterization and Stability of Small-ELM Regimes in NSTX*

A. Sontag¹, J. Canik¹, R. Maingi¹, J. Manickam², P. Snyder³, R. Bell², S. Gerhardt², S. Kubota⁴, B. LeBlanc², T. Osborne³, K. Tritz⁵

¹ORNL, ²PPPL, ³GA, ⁴UCLA, ⁵JHU

*This work was supported by U.S. DOE Contracts DE-AC05-00OR22725, DE-FG03-99ER54527, DE-FG03-95ER54309 and DE-AC02-09CH11466

Small-ELM Regime Observed Coincident with Edge Instability

- Small-ELM (Type-V*) operation highly desirable in NSTX
 - δW_{MHD} < 1% per ELM

NSTX

- no large oscillations at edge compared to Type-I
 - *R. Maingi, et al., Nucl. Fusion 45 (2005) 264
- Downward bias & high edge collisionality required for access
 - $\delta_r^{sep} < -5$ mm necessary (but not sufficient)
 - $v_{ped}^{*} > 1-2$
 - no correlation with edge rotation or rotation shear

Edge Instability Observed in Multiple Diagnostics

Toroidal Rotation & Density Profiles

- Poloidal Mirnov array indicates n = 1 base freq.
- multiple harmonics observed in some cases
- higher harmonic base frequency in Li-induced ELM-free H-mode
- rotating with plasma just inside pedestal

- USXR indicates mode near top of pedestal
- oscillations peak near 141 cm
 - Ch. 12 near top of pedestal (R_{tan} ~ 141 cm)
 - Ch. 13 in scrape off no signal

Ch. 10 Maharan Mah

0.302

time (s)

USXR Ch. 12 Spectrogram

10 µm Be filter 0.3-80 kHz

0.303

0.304

0.301

Ch. 9

0.300

Core

- still need to determine E x B shear correlation
- Low-frequency (< 10 kHz) oscillations observed coincident with Type-V ELM transition
- ST equivalent to edge harmonic oscillation (EHO)?
 - EHO allows access to ELM-free QH-mode at standard-A
 - possible saturated kink
 - rotation has complex role
 - edge collisionality important
 - EHO provides edge transport, reduces peeling-ballooning instability drive

Similar Shots Examined for Causes of Transition to Small-ELM Regime

P_e (kPa)

4.0 (ke/) 1.0 (ke/)

V_{\$\phi\$} (km/s)

20

- Type-I ELMs stabilized with δ ramp-down
 - both shots have Type-I ELMs prior to 0.3 s
 - other shape parameters held constant
 - shape change will affect peeling-ballooning stability
- δ_r^{sep} reduction well after transition - both cases start with $\delta_r^{sep} < -5$ mm

0.8 0.6 (MA) P_{NRI} (MW)→ لَD (a.u.) 200 W_{MUD} (kJ) 150 100 135155 50 — 135159

- inside Ch. 9 no low-freq. oscillations
- 10 μm Be filters eliminate edge radiation
- unfiltered USXR shows ELM spikes independent of coherent mode
- Edge reflectometer shows density fluctuations
- R_{cutoff} ~ 140 cm during mode
- fluctuations at same frequency as Mirnovs/USXR
- relatively weak compared to core modes
- TRANSP analysis not able to determine level of increased transport from mode
 - increased transport required if mode is stabilizing Type-I
 - analysis only reliable up to $\rho \sim 0.85$
 - more detailed analysis required
 - must account for particle sources and sinks

time (s)

Poloidal Mirnov

0.4

time (s)

0.6

0.8s

10 г

0.0

Fundamental

0.2

- Profiles determined using time-slice averaging kinetic equilibrium technique developed on DIII-D
 - run EFIT at TS laser times
 - map n_e , T_e , T_i to ψ_N space
 - fit tanh function to re-mapped profiles
 - compute kinetic EFIT using tanh fits
 - calculate j_{RS} form Sauter model
- Pedestal pressure peak shifted inward & increased for Type-V
 - P_e nearly identical
 - Type-I profile has increased pressure gradient magnitude near edge
 - Type-V case has largest magnitude
 - Type-V profile relatively constant throughout shot
 - small-ELMs have little effect on profiles

- large error bars near edge
- also large relative fluctuations in slowly rotating edge
- analysis of wider range of shots shows wide

Pressure Profile Comparisions Shot 135155 Profile Fits

Rotation Profile Comparison

Stability Analysis Indicates Type-V Case Closer to Ballooning Boundary

- ELITE^{*} indicates n = 3 most unstable mode for both cases
 - run for n = 3,6,9,12,15
 - initial PEST calculations also show n = 3 most unstable
 - NSTX is typically on peeling (current driven) side of stability curve
 - ST geometry naturally leads to higher j_{BS} than at standard-A
 - strong shaping stabilizing to ballooning modes

- close to n = 15
- lower δ decreases ballooning stabilization

Change in operating point not the same as transition from ELMy to QH-mode with EHO

- EHO moves operating point across peeling boundary
- both NSTX cases still on peeling boundary
- need more statistics for NSTX

Further Analysis Required to Determine Cause of

- variation in rotation and rotation shear for both Type-I and Type-V
- Edge collisionality increased in Type-V case
 - previous observations show increased v^* stabilizes Type-I
 - presumably due to reduced j_{BS} & peeling drive
- Edge current peak slightly reduced in Type-V case
- j_{BS} slightly higher in Type-V case
- peeling-ballooning stability calculations required

Stabilization of Type-I ELMs

- Edge instability observed coincident with small-ELM transition
 - observed in many NSTX discharges
 - may have similar role to EHO at normal-A
 need to determine how instability affects
 transport
- No correlation with toroidal rotation or rotation shear
 - need to examine ExB shearing rate
- Increased collisionality ($v_e^* > 2$) and $\delta_r^{sep} < -5$ mm needed for Type-V ELMs
 - Type V cases have increased pedestal pressure
- Stability analysis shows Type-V case closer to ballooning boundary
 - need to include MSE in equilibrium reconstructions
 - need to analyze more shots for better statistics
- Need to include particle sources and sinks to determine if mode is affecting transport

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

Supported by

