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25th IAEA-FEC – MHD effects on NB current drive,  M. Podestà  (Oct. 17th, 2014)!

Reliable, quantitative predictions of Energetic Particle 
(EP) dynamics are crucial for burning plasmas


•  EPs from Neutral Beam (NB) injection, alphas, RF 
tails drive instabilities, 

–  e.g. Alfvénic modes - AEs


•  With instabilities, ‘classical’ EP predictions (e.g. 
for NB heating, current drive) can fail


> Predictive tools are being developed, validated 
for integrated modeling of these effects in 
present and future devices (ITER, Fusion Nuclear 
Science Facility - FNSF)
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Outline


•  NSTX discharges with strong MHD are used to 
test and validate EP transport models


•  Modeling methods beyond ‘classical’ EP physics 
are developed to account for MHD effects


•  New model captures MHD modifications of EP 
phase space leading to Neutral Beam current 
redistribution
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Alfvénic modes (AEs) and kink-like modes  
degrade fast ion confinement, plasma performance


Super-alfvénic ions, 
high !fi: plethora of fast 
ion driven instabilities
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[Fredrickson, NF 2013]!


 
 
NSTX

Major radius 
  0.85 m

Aspect ratio 
  1.3

Plasma current 
~1 MA

Toroidal field 
<0.55 T

Pulse length 
<2 s

Neutral Beam sources:



 
PNBI ≤ 6 MW


 
Einjection ≤ 95 keV


 
1<vfast/vAlfvén<5


Global and Compressional AEs"

toroidal AEs!
reverse"
shear"
AEs" toroidal AEs"

measured"

simulated"
(classical)"

NSTX #139048!
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Transport code TRANSP includes NUBEAM module 
for classical fast ion physics


•  Additionally, ad-hoc diffusivity Dfi is used to 
mimic enhanced fast ion transport

–  Assumed uniform in radius, pitch, energy in this work


•  Metric to set Dfi: match neutron rate, Wmhd
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Dfi=0.0 m2/s!
Dfi=1.0 m2/s!
Dfi=2.0 m2/s!

Dfi=5.0 m2/s!

measured!
simulated with Dfi(t)!
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However: instabilities introduce fundamental 
constraints on particle dynamics
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 From Hamiltonian formulation – single resonance:



 !=2"f, mode frequency       n, toroidal mode number


E, energy

P"#mRvpar-$, canonical angular



 
 momentum

µ#vperp

2/(2B), magnetic moment

where 
$ : poloidal flux



R  : major radius


m : mass
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%E&
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 From Hamiltonian formulation – single resonance:



 !=2"f, mode frequency       n, toroidal mode number


These effects are not accounted for by ad-hoc Dfi.

A new method is needed to include them in integrated modeling.


E, energy

P"#mRvpar-$, canonical angular



 
 momentum

µ#vperp

2/(2B), magnetic moment

where 
$ : poloidal flux



R  : major radius


m : mass
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P"&

Constants of motion (E,P",µ) are the natural 
variables to describe wave-particle interaction
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P"&

Particle-following codes are used to extract 
distribution of ‘kicks’ %E, %P" for each bin (E,P",µ)
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Effects of multiple TAE modes!

- ORBIT code: record E,P",µ 
vs. time for each particle


- Compute average kicks over 
multiple wave periods:"
" ""

- Re-bin for each (E,P",µ) region !

[Podestà, PPCF 2014]!

neglected! relevant time scale! classical!

1/fwave < (resonance < (collisions!

#P$1!

#P$2!

#P$3!

#P$N!

#E1!

#E2!
#E3!

#EN!



25th IAEA-FEC – MHD effects on NB current drive,  M. Podestà  (Oct. 17th, 2014)!

µ
 B

0/E
&

New ‘kick model’ uses a probability distribution 
function for particle transport in (E,P",µ) space
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Effects of multiple TAE modes!

Kicks %E,%P" are described by


which includes the effects of 
multiple modes, resonances.

 
correlated random 

walk in E, P$%

[Podestà, PPCF 2014]!

ORBIT code modeling,!
random initialization!
of particles in phase-space!

%
P "

&

%E [keV/ms]&
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-  Example: toroidal AEs (TAEs) 
and low-frequency kink"

-  p(%E,%P"|P",E,µ) from particle-
following code ORBIT"

-  Each type of mode has 
separate p(%E,%P"), Amode(t)"

-  TAEs and kinks act on different 
portions of phase space"

-  Amplitude vs. time can differ, 
too"

-  Effects on EPs differ"
> TAEs: large %E, %P"&

> kinks: small %E, large %P"!

p(%E,%P"|P",E,µ) and a time-dependent ‘mode amplitude 
scaling factor’ enable multi-mode simulations 
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%Erms" %Erms"

inner wall! outer wall!
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p(%E,%P"|P",E,µ) and a time-dependent ‘mode amplitude 
scaling factor’ enable multi-mode simulations 
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-  Example: toroidal AEs (TAEs) 
and low-frequency kink"

-  p(%E,%P"|P",E,µ) from particle-
following code ORBIT"

-  Each type of mode has 
separate p(%E,%P"), Amode(t)"

-  TAEs and kinks act on different 
portions of phase space"

-  Amplitude vs. time can differ, 
too"

-  Effects on EPs differ"
> TAEs: large %E, %P"&

> kinks: small %E, large %P"!
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Two NSTX cases are analyzed in detail: TAE avalanche 
and avalanche + kink-like mode (multi-mode scenario)
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TAE avalanche! n=1!
n=2!

n=3!

n=2-6! TAE avalanches!
+!

kink-like mode!
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nb
"

TAE avalanches cause an abrupt drop in fast ions  
and up to ~40% reduction in local NB-driven current density 
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•  Results from ‘kick model’

•  Fast ions redistributed 

outward, lose energy

–  Consistent with constraints from 

resonant interaction:


•  NB-driven current Jnb is also 
redistributed out


•  Jnb(r) modification largely 
unpredicted by ad-hoc Dfi in 
this case


n fi
 [a
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b [
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NB driven current!
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•  Results from ‘kick model’

•  Fast ions redistributed 

outward, lose energy
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resonant interaction:
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Two NSTX cases are analyzed in detail: TAE avalanche 
and avalanche + kink-like mode (multi-mode scenario)
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n=1!
n=2!

n=3!

n=2-6! TAE avalanches!
+!

kink-like mode!

TAE avalanche!
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Synergy between different classes of instabilities modifies 
MHD effects on Jnb(r) – not captured by ad-hoc Dfi
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•  Kinks have broad 
radial structure, 
connect core to 
boundary


> Synergy arises from 
mode overlap in 
phase space
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Phase-space is selectively modified by instabilities:  
TAEs ->                          , kinks -> mostly %P"&
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Simulated neutron rate agrees with experiments  
for both TAE avalanches & multi-mode cases
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n=1!
n=2!

n=3!

n=2-6!

TAE 
avalanches!

+!
kink-like mode!

n=2-6!

TAE avalanches!

Use ʻkick modelʼ 
coupled to stand-alone 
NUBEAM!

TAEs"

kick model"
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Summary


•  NB-driven current profile can be strongly 
affected by MHD instabilities

–  Not all effects properly captured by classical EP physics


•  A new model is implemented in TRANSP for EP 
simulations including phase-space details

–  Validation within TRANSP framework is in progress


•  New tools will improve scenario development on 
NSTX Upgrade & future devices

–  NB current drive optimization

–  NB-driven current profile control for high-qmin steady 

state operations
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