

Supported by

Office of Science

Progress toward commissioning and plasma operation in NSTX-U

Masa Ono and the NSTX-U Team (Presented by S.A. Sabbagh)

> FEC IAEA Meeting St. Petersburg, RU 18-23 October 2014

U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kvushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Tsukuba U Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI NFRI KAIST POSTECH **SNU** ASIPP ENEA. Frascati CEA. Cadarache **IPP. Jülich IPP, Garching** ASCR, Czech Rep

🔘 NSTX-U

Columbia U

General Atomics

Johns Hopkins U

Nova Photonics

New York U

Princeton U

Think Tank. Inc.

Purdue U

UC Davis

UC Irvine

U Colorado

U Maryland

U Rochester

U Wisconsin

U Washington

U Illinois

CompX

FIU INL

LANL

LLNL

MIT

ORNL

PPPL

SNL

Lodestar

M. Ono IAEA FIP/P8-30 2014

October 13-18, 2015

NSTX Upgrade Mission Elements

- Advance ST as candidate for **Fusion Nuclear Science Facility** (FNSF)
- **Develop solutions for the plasma**material interface challenge
- **Explore unique ST parameter** regimes to advance predictive capability - for ITER and beyond
- **Develop ST as fusion energy** system

ST-FNSF

Liquid Lithium "Snowflake"

Non-inductive ramp-up from ~0.4MA to ~1MA projected to be possible with new centerstack (CS) + more tangential 2nd NBI

- New CS provides higher TF (improves stability), 3-5s needed for J(r) equilibration
- More tangential injection provides 3-4x higher CD at low I_P:
 - − 2x higher absorption (40 \rightarrow 80%) at low I_P = 0.4MA
 - 1.5-2x higher current drive efficiency

100% non-inductive operating points projected for a range of toroidal fields, densities, and confinement levels

Projected Non-Inductive Current Levels for κ ~2.85, A~1.75, f_{GW}=0.7

B _T [T]	P _{inj} [MW]	I _P [MA]
0.75	6.8	0.6-0.8
0.75	8.4	0.7-0.85
1.0	10.2	0.8-1.2
1.0	12.6	0.9-1.3
1.0	15.6	1.0-1.5

From GTS (ITG) and GTC-Neo (neoclassical):

 $\chi_{i,ITG}/\chi_{i,Neo} \sim 10^{-2}$ Assumption of neoclassical ion thermal transport should be valid

S. Gerhardt, et al., Nucl. Fusion 52 (2012) 083020

NSTX-U will investigate detachment and high-flux-expansion "snowflake" divertor for heat flux mitigation

NSTX data

Divertor heat flux width decreases with increased plasma current I_P

30-45MW/m² in NSTX-U with conventional LSN divertor at full current and power

Can reduce heat flux by 2-4× in NSTX via partial detachment at sufficiently high f_{rad}

lowers incident q_{\perp} , promotes detachment

NSTX-U: U/D balanced snowflake has < 10MW/m² at I_P = 2MA, P_{AUX} =10-15MW

NSTX Upgrade Project Progress Overview

New Center Stack Project Scope

- Inner TF bundle
- TF Flex bus
- OH coil
- Inner PF coils
- Enhance outer TF supports `
- Enhance PF supports
- Reinforce umbrella structure > Structure
- New umbrella lids
- Power systems
- I&C, Services, Coil protection

Ancillary Sys

Center stack

2nd NBI Project Scope

- Decontaminate TFTR beamline
- Refurbish for reuse
- Relocate pump duct, 22 racks and numerous diagnostics to make room in the NSTX Test Cell
- Install new port on vacuum vessel to accommodate NB2
- Move NB2 to the NSTX Test Cell
- Install power, water, cryo and controls

M. Ono IAEA FIP/P8-30 2014

Substantial Increase in NSTX-U Device / Plasma Performance To provide data base to support ST-FNSF designs and ITER operations

🔘 NSTX-U

-7

Improved Center-Stack Design to Handle Increased Forces Identical 36 TF Bars and Innovative Flex-Bus Design

M. Ono IAEA FIP/P8-30 2014

Center Stack Fabrication & Assembly Proceeding Well Innovative manufacturing techniques developed

TF Bundle Manufacturing Stages

Four TF quadrants were combined into a full TF bundle

TF bundle with ground wrapping lowered into VPI mold

Center-Stack Casing with tile studs

M. Ono IAEA FIP/P8-30 2014

OH Winding Operation OH Conductor Induction Braze & Taping Machine

In-line Induction braze station

1st to 2nd layer OH transition

1st layer OH winding 2/3 complete

Taping Machine – Three fiberglass tapes, first two with kapton

M. Ono IAEA FIP/P8-30 2014

Completed Center-stack Components Center-Stack Assembly Started

Aerial View of the NSTX-U Test Cell (Sept. 2014)

M. Ono IAEA FIP/P8-30 2014

Final 2nd NBI Component being Installed 2nd NBI duct with pumping section and NBI armor installed

2014

Source installation planned for June

Relocation of the 2nd NBI beam line box from the TFTR test cell into the NSTX-U Test Cell Complete.

TFTR NBI beam box and components successfully tritium decontaminated.

Beam Box being lifted over NSTX

Beam Box placed in its final location and aligned

Beam Box being populated with components

Support Structural and Vacuum Vessel Upgrades Must handle 4 x higher electromagnetic loads

Highly Tangential 2nd NBI Enabled by JK-Cap Outer Wall Radius Moved Outward to Avoid Beam Clipping

JK cap

Interior View of Bay J-K

Exterior View of Bay J-K

HHFW System for Electron Heating and Current Ramp-up Improved Antennas were installed in NSTX-U

New Compliant Antenna Feeds Will allow HHFW antenna feedthroughs to tolerate 2 MA disruptions

Antennas were re-installed with the new feeds and back-plate grounding

Additional ground installed

 Prototype compliant feeds tested to 46 kV in the RF test-stand. Benefit of backplate grounding for arc prevention found.

New Digital System Provides Comprehensive Coil Protection

NSTX-U diagnostics to be installed during first 2 years Half of NSTX-U Diagnostics Are Led by Collaborators

MHD/Magnetics/Reconstruction

Magnetics for equilibrium reconstruction Halo current detectors High-n and high-frequency Mirnov arrays Locked-mode detectors RWM sensors

Profile Diagnostics

MPTS (42 ch, 60 Hz) T-CHERS: $T_i(R)$, $V_{\phi}(r)$, $n_C(R)$, $n_{Li}(R)$, (51 ch) P-CHERS: $V_{\theta}(r)$ (71 ch) MSE-CIF (18 ch) MSE-LIF (20 ch) ME-SXR (40 ch) Midplane tangential bolometer array (16 ch)

Turbulence/Modes Diagnostics

Poloidal FIR high-k scattering Beam Emission Spectroscopy (48 ch) Microwave Reflectometer, Microwave Polarimeter Ultra-soft x-ray arrays – multi-color

Energetic Particle Diagnostics

Fast Ion D_{α} profile measurement (perp + tang) Solid-State neutral particle analyzer Fast lost-ion probe (energy/pitch angle resolving) Neutron measurements

Edge Divertor Physics

Gas-puff Imaging (500kHz) Langmuir probe array Edge Rotation Diagnostics (T_i , V_{ϕ} , V_{pol}) 1-D CCD H_a cameras (divertor, midplane) 2-D divertor fast visible camera Metal foil divertor bolometer **AXUV-based Divertor Bolometer** IR cameras (30Hz) (3) Fast IR camera (two color) Tile temperature thermocouple array Divertor fast eroding thermocouple Dust detector **Edge Deposition Monitors** Scrape-off layer reflectometer Edge neutral pressure gauges Material Analysis and Particle Probe Divertor VUV Spectrometer

Plasma Monitoring

FIReTIP interferometer Fast visible cameras Visible bremsstrahlung radiometer Visible and UV survey spectrometers VUV transmission grating spectrometer Visible filterscopes (hydrogen & impurity lines) Wall coupon analysis

New capability, Enhanced capability wait coupon analysis

NSTX Upgrade Project Milestones on Track First plasma on February 15, 2014

Level	Milestone	DOE Commitment Date	Forecast	Actual
Level I	Receive CD-2 Approval	Jan-11		Dec-10
Level II	Project FDR	Jun-11		Jun-11
Level I	Receive CD-3 Approval	Jan-12		Dec-11
Level II	Receive First Delivery Machined Inner Tf Conductor	Jun-12		Apr-12
Level II	Nstx Complete Operations	Jul-12		Sep-11
Level II	Begin Upgrade Outage Aug-12		Sep-11	
Level II	Award Neutral Beam (NB) Vessel CapJun-13			Feb-11
Level II	Begin Inner Tf Quadrant Fab (Apply Turn Insul #1	Apr-13		Jun-12
Level II	Complete Assy and Pot Of 4th Inner TF Quadrant Oct-13		Jun-13	
	Install NB Sources		Aug-14	Aug-14
Level II	Complete Fabricate & Test Inner TF/OH Coil Assy	Jul-14		Jul-14
Level II	NB Cap Installed	Oct-14		Jan-13
	Deliver Center Stack to the NSTX TC		Sep-14	
Level II	Lift In New Centerstack	Jan-15	Nov-14	
	Pumpdown		Dec-14	
Level II	Complete ISTP	Aug-15	Feb-15	
Level II	Resume Operations	Sep-15	Feb-15	
Level I	CD-4	Sep-15	Feb-15	

Strategy Toward Full NSTX-U Parameters

After CD-4, the plasma operation could enter quickly into new regimes

	NSTX (Max.)	Year 1 NSTX-U Operations (2015)	Year 2 NSTX-U Operations (2016)	Year 3 NSTX-U Operations (2017)	Ultimate Goal
I _Р [МА]	1.2	~1.6	2.0	2.0	2.0
Β _τ [T]	0.55	~0.8	1.0	1.0	1.0
Allowed TF I ² t [MA ² s]	7.3	80	120	160	160
I _P Flat-Top at max. allowed I ² t, I _P , and B _T [s]	~0.4	~3.5	~3	5	5

- 1st year goal: operating points with forces up to ½ the way between NSTX and NSTX-U, ½ the design-point heating of any coil
 - Will permit up to ~5 second operation at B_T ~0.65
- 2nd year goal: Full field and current, but still limiting the coil heating
 - Will revisit year 2 parameters once year 1 data has been accumulated
- 3rd year goal: Full capability

Facility and Diagnostic Enhancements to support the exciting 5 year research plan

