NSTX-U

TH/P4-14

U.S. DEPARTMENT OF Office of Science

Full wave simulations for fast wave heating and power losses in the scrape off layer of tokamak plasmas

N. Bertelli¹, E.F. Jaeger², J.C. Hosea¹, C.K. Phillips¹, L. Berry³, P.T. Bonoli⁴, G.-Y. Fu¹, S.P. Gerhardt¹, D.L. Green³, B. LeBlanc¹, R. J. Perkins¹, C.M. Quin⁵, <u>R.I. Pinsker⁶</u>, R. Prater⁶, P. Ryan³, G. Taylor¹, E.J. Valeo¹, J.R. Wilson¹, J.C. Wright⁴, and X.J. Zhang⁵

1 - Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA 2 – XCEL Engineering Inc. Oak Ridge, TN 3781-6169, USA 4 – MIT Plasma Science and Fusion Center, Cambridge, MA 021139, USA 5 - Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, Peoples Republic of China 6 - General Atomics, PO Box 85608, San Diego, CA 92186-5608, USA

Introduction	Phys. mech. behind the damping in the SOL not yet been identified	Larger evanescent region at higher B _T achievable in NSTX-U
 Experimental: In NSTX, up to ~ 60% of the power possibly lost to SOL Larger SOL losses for high density in front of the antenna Field-line mapping models flow of lost HHFW power from the antenna the divertor [Perkins <i>et al</i>, PRL 2012] Computed strike points form a spiral that matches the observed RF spiral In DIII-D, observed increase in edge losses as the SOL density increase ELMy H-mode plasmas [Petty <i>et al</i>, NF 39, 1421 (1999)] Modelling: SOL region now included in full wave code AORSA [Green et al, PRL Simulation results show: Indication of cavity mode in AORSA simulations on NSTX Negligible power absorbed in the SOL with only standard kinetic model Need to understand and minimize these RF power losses for improperformance and compare different devices with different geometry 	egion to egion to esin 011] ing FW and • "Collisional" damping included in AORSA as a proxy to represent the real SOL damping processes • It is essentially a "Krook model": $\sum_{\text{ess in}} \text{related to} \qquad \sum_{Z} \left(\frac{\omega - n\Omega_c}{k_{\parallel} v_{th}} \right) \text{Damping} Z \left(\frac{\omega - n\Omega_c + i\nu}{k_{\parallel} v_{th}} \right)$ $\sum_{\text{Plasma Dispersion Function}} Z \left(\frac{\omega - n\Omega_c + i\nu}{k_{\parallel} v_{th}} \right)$ • v/ ω "collision" parameter is input into AORSA • absorption obtained through the anti-hermitian part of $\alpha = \frac{\omega}{4\pi} \frac{\mathbf{E}^* \cdot \boldsymbol{\varepsilon}^a \cdot \mathbf{E}}{ \mathbf{S} }$ Poynting vector	• H-mode scenario planned for NSTX-U, obtained by TRANSP simulations [S. P. Gerhardt, Nucl. Fusion 52, 083020 (2012)] $n_{e,FWcut-off} \propto \frac{k_{\parallel}^2 B}{\omega}$ • NSTX-U (B _T = 1 T) vs. NSTX (B _T = 0.55 T): transition occurs for ~2x higher in n _{ant} • wider evanescent region with lower SOL power losses → favorable for future experiments • NSTX-U: optimization of edge density to minimize the SOL losses and maximize the coupling to the core • Same relative behavior found for NSXT-U case with B = 0.76 T • H-mode scenario planned for NSTX-U, with the second for the core the coupling to the core
Same 30 MHz FW system in NSTX & NSTX-U	Sharp increase in SOL pow. loss. when FW propagates within SOL	DIII-D: E _{tot} in the SOL increases when FW propagates within SOL
for Deuterium main ion NSTX: B = 0.55 T NSTX-U:	Fast wave cut-off (cold plasma) $R - N_{\parallel}^{2} = 0$ $R = 1 - \sum \frac{\omega_{ps}^{2}}{25}$	$ E_{tot} \text{ is shown for } n_{\phi} = 15, \ \omega/2\pi = 60 \text{ MHz}$ $(`2D'' \clubsuit \text{ single dominant mode}), \# 111221$ $ E_{tot} \text{ is shown for } n_{\phi} = 15, \ \omega/2\pi = 90 \text{ MHz}$ $(`2D'' \clubsuit \text{ single dominant mode}), \# 111221$ $n_{e} = 0.5 \times 10^{18} \text{ m}^{3} + n_{e} = 1.0 \times 10^{18} \text{ m}^{3}$ $n_{e} = 0.5 \times 10^{18} \text{ m}^{3} + n_{e} = 1.0 \times 10^{18} \text{ m}^{3}$

range

W/m - 3.00e+5

- 2.25e+5

- 1.50e+5

- 7.50e+4

• SOL power is found below the mid-plane for higher density due to large RF field in the SOL

SOL power losses appear to be larger near the LCFS

experimental analysis [Perkins et al. Nucl. Fus. 53 (2013) 083025]

as well as the antenna, consistent with

For $n_{\phi} = 12$, the behavior of the SOL power losses disagrees with the behavior found in NSTX/NSTX-U and DIII-D: **16** the transition to higher SOL power losses does not appear

Conclusions

- Full wave simulations for NSTX/NSTX-U and DIII-D show a direct correlation between the large SOL RF field, the location of the FW cut-off, and the SOL losses (in 2D and 3D)
 - ✓ SOL losses increase significantly as the wave transitions from evanescent to propagating as the density in the SOL increases

✓ higher SOL losses with lower antenna phase, consistent with experiment

- 3D simulations show larger SOL losses near the antenna and the LCFS ✓ consistent with the NSTX experiment
- NSTX-U simulations predict a wider evanescent region with lower SOL losses relative to NSTX

Optimization of the edge density in order to minimize the RF SOL losses

- The behavior of SOL power losses in NSTX/NSTX-U and DIII-D is really similar and is consistent with the experimental observations for both devices
- EAST (with minority heating regime) results strongly differ from NSTX/NSTX-U and DIII-D results: <u>under investigation</u>
- Future direction:

campaign

- Further studies in order to identify the physical mechanism(s) behind the SOL losses [Sheath effects, PDI, non-linear processes, etc.]
- Implementation of a more realistic boundary condition (limiter boundary) in the full wave code AORSA is underway
- new experimental observations/measurments in the upcoming NSTX-U experimental

See for NSTX/NSTX-U also Bertelli et al, Nucl. Fusion 54 (2014) 083004