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Good discharge reproducibility and H-mode performance was realized in the National 
Spherical Torus Experiment (NSTX) with an extensive wall conditioning program. The 
graphite plasma-facing components were baked for several weeks to 350 oC at the beginning 
of a campaign, with extensive deuterium and helium glow discharge cleaning (HeGDC). 
Periodic boronization was used, and enabled reliable H-mode access. Daily run preparation 
included 15-30 minutes of pre-run HeGDC, followed by inter-discharge HeGDC of 9-14 
minutes, depending on the target discharges, with a resulting inter-discharge time of 15-20 
minutes1. With the development of inter-discharge lithium evaporation2, however, the 

necessity of both inter-discharge 
HeGDC and lithium evaporation 
became questionable. 
 
To assess the viability of operation 
without HeGDC and directly compare 
with inter-discharge lithium 
evaporation, experiments were 
conducted in which lithium evaporation 
was used while systematically reducing 
the inter-discharge HeGDC from the 
standard 9 minutes to zero. Good 
discharge reproducibility without 
HeGDC was achieved with lithium 
evaporation doses of 100 mg or higher; 
evaporations of 200-300 mg typically 
resulted in very low ELM frequency or 
ELM-free operation, reduced recycling, 
and improved energy confinement, e.g. 
as shown in Figure 1.   
 
The inverse experiment, i.e. when 
lithium evaporation was terminated, 
and inter-discharge HeGDC was re-
initiated, with a systematic increase in 
HeGDC duration and decrease in 
external fueling, was also conducted; 
similar results were obtained to those 

No Li, 9 min HeGDC 
Li w/6.5 min HeGDC 
Li w/4 min HeGDC 
Li w/no HeGDC 

Figure 1: evolution of NSTX discharge parameters 
with variable HeGDC time preceding Li 
evaporaton. A reference ELMy discharge without 
lithium and with standard HeGDC is also shown. 
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described above. In addition, an experiment in which a large lithium dose (~25g, ~100 times 
the typical inter-discharge evaporation) prior to operations was conducted. In this case, about 
100 plasma discharges over three run days were conducted with neither inter-discharge Li 
evaporation nor HeGDC. Nearly all of these achieved H-mode, but the pulse lengths and 
performance were irreproducible. At the end of the sequence, recycling started to slowly 
increase, external fueling was decreased, and inter-discharge HeGDC was resumed.  
 
While the discharges with longer inter-discharge HeGDC times performed modestly better 
than those with shorter or no HeGDC durations, the discharge performance improved 
substantially in NSTX with increasing lithium dose, in both moderately shaped3, 4 and 
strongly shaped5 plasmas. To quantify this effect, a sequence of H-mode discharges with 
increasing levels of pre-discharge lithium evaporation (‘dose’) with high triangularity and 
elongation boundary shape, and without inter-discharge HeGDC conditioning, was analyzed 
with the SOLPS edge transport code. Globally, energy confinement increased, and recycling 
decreased with increasing lithium dose, similar to a previous lithium dose scan in medium 
triangularity and elongation plasmas. Data-constrained interpretive modeling with SOLPS 
quantified the edge transport change: the electron particle diffusivity decreased by 10-30x 
(Figure 2). The electron thermal diffusivity decreased by 4x just inside the top of the 
pedestal, but increased by up to 5x very near the separatrix. These results provide a baseline 
expectation for lithium benefits in NSTX-U, which is optimized for a boundary shape similar 
to the one used in this experiment. New results from upcoming wall conditioning 
experiments in NSTX-U will also be presented, when available. 
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Figure 2: (a) effective electron particle diffusivity De and (b) electron thermal conductivity χe vs. 
distance from the separatrix at the outer midplane. The lithium evaporation dose is indicated.  
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