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Control of toroidal rotation is an important issue for tokamaks and ITER since the rotation 
and its shear can significantly modify plasma stability from microscopic to macroscopic 
scales. One of the promising actuators is the non-axisymmetric (3D) magnetic perturbation, 
which is under consideration in ITER for other purposes such as error field or ELM control, 
since neoclassical toroidal momentum transport can 
be substantially increased in the presence of non-
axisymmetry. This so-called neoclassical toroidal 
viscosity (NTV) process is quadratically non-linear 
to the magnitude of the applied field, and 
furthermore has complex dependency on the 3D 
field distribution. Therefore, the optimization of the 
3D field distribution for NTV and ultimately 
rotation control is non-trivial, requiring a number of 
numerical simulations up to a thousand code runs 
even with advanced optimizers. In this paper we 
present a new method that entirely redefines the 
optimizing process, by solving 3D equilibrium and 
NTV consistent with each other and constructing 
the so-called torque response matrix function. As 
shown in Figure 1, the NTV profile optimization 
can be achieved by a single code run, with much 
better efficiency and accuracy than the previous 
methods with stellarator optimizers [1]. 
The new, general perturbed equilibrium code 
(GPEC) solves the single-fluid quasi-neutral anisotropic pressure perturbed equilibrium in 
the first gyro-radius ordering; 𝐹 𝜉 = 𝛿𝑗×𝐵 + 𝑗×𝛿𝐵 + ∇ ∙ 𝜉 ∙ ∇𝑝 − ∇ ∙ 𝛿Π = 0  from a 
Maxwellian plasma in axisymmetry. NTV torque comes from the toroidal component of the 
anisotropic pressure force ∇ ∙ 𝛿Π , and the net torque arises at the second order in 
perturbation from the surface average on perturbed flux surfaces. The anisotropic pressure 
force ∇ ∙ 𝛿Π that appears in the force balance has the same kinetic origin as that in the NTV, 
but is the first order change locally inducing torque distribution and non-ambipolar currents 
that can modify the field penetration. If NTV is calculated based on the 𝛿𝐵 established by 
this anisotropic perturbed equilibrium, both transport and equilibrium calculations will be 
consistent with each other. This force operator, however, is no longer self-adjoint due to the 
finite toroidal torque, and therefore must be solved directly for each of three components, 
rather than using the variational method with 𝛿𝑊 that is popular in equilibrium calculations. 
Nevertheless, the direct treatment yields the modified kinetic Euler-Lagrange equation 
𝐹Ξ!′+ 𝐾!Ξ!

! − 𝐾!!Ξ!! + 𝐺Ξ! = 0 , similarly to self-adjoint case. Here Ξ!  is the 

Figure 1. Optimized torque profile to 
maximize torque in ψ<0.5 while 
minimizing torque in ψ>0.5 for an 
NSTX-U target, using GPEC vs. IPEC-
coupled stellarator optimizers.   
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vector containing Fourier components of radial displacements and 𝐹,𝐾,𝐺 are matrices 
containing fluid and kinetic contributions. For IPEC and DCON, 𝐹,𝐺 matrices become 
Hermitian and 𝐾! = 𝐾!, and in cylindrical geometry it becomes the Newcomb equation 
with the matrices being scalar.  

Integrating energy and torque, one can show 𝛿𝑊 + !!!
!
= − 𝜉 ∙ 𝐹 𝜉 = Ξ!! ∙𝑊! ∙ Ξ!, in 

which only the surface term remains since the volumetric term vanishes by the force 
balance. The anti-Hermitian part of the plasma response matrix function 𝑊!(𝜓) is the 
torque response matrix function Τ(𝜓), which provides the self-consistently calculated NTV 
in any point of radius as the quadratic form involving the external field Φ on the control 
surface, i.e. Φ! ∙ Τ ∙Φ. Given  Τ(𝜓), one can immediately answer various questions for 
optimization. An important example is the maximum (or minimum) torque possible for any 

arbitrary interval (𝜓! ,  𝜓! ), and corresponding 3D 
field distribution, with the integrated total torque up 
to the boundary 𝜓!   

fixed. The answer is the 
maximum (or minimum) eigenvalue and eigenvector 
of the composite matrix Τ!! 𝜓! Τ 𝜓! − Τ 𝜓! . 
The example shown in Figure 1 is obtained by simply 
calculating the first eigenvector of this matrix for 
0<  𝜓 <0.5, and applying it to plasma as an external 
field on the boundary. Furthermore, the eigenvectors 
provide a way to properly order and decompose 3D 
fields with respect to local torque. In many cases, it 
has been shown that negative m modes (backward 
helicity modes) play an important role in balancing 
the positive m modes for local torque optimization.  
NTV torque profiles obtained by this method are self-
consistent across equilibrium and transport, which 
can be very important whenever local or global 
torque is substantial, due to the strong toroidal phase 
shift in response and consequent inefficiency in 
coupling between plasma and external field. This is 
called the self-shieling process [2] as illustrated in 

Figure 2, which can significantly change NTV predictions. In fact, the importance of self-
consistent calculations with ∇ ∙ 𝛿Π in 3D response has been highlighted by recent MARS-K 
applications to DIII-D [3] and NSTX. In principle, MARS-K and GPEC should provide the 
same results in the zero-frequency limit, and this has been successfully verified in this 
work. The unique feature of GPEC is the full eigenmode structure of 3D plasma response 
consistent with ∇ ∙ 𝛿Π and neoclassical toroidal torque, which thereby provides a new and 
systematic way of optimization for NTV and non-resonant fields. 
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Figure 2. Perturbative NTV with 
IPEC vs. self-consistent NTV with 
GPEC for an NSTX-U target with 
scaled E×B. Subfigures in 3D shows 
the NSTX-U plasma response to 
applied 3D fields from midplane coils. 


