Kinetic profiles and impurity transport response to 3D-field triggered ELMs in NSTX

F. Scotti¹, V.A. Soukhanovskii¹, J.M. Canik², R.E. Bell³, A. Diallo³, S.P. Gerhardt³, W. Guttenfelder³, S.M. Kaye³, B.P. LeBlanc³, M. Podestà³
(email: fscotti@pppl.gov)
¹Lawrence Livermore National Laboratory, Livermore CA 94550, USA
²Oak Ridge National Laboratory, Oak Ridge TN 37831, USA
³Princeton Plasma Physics Laboratory, Princeton NJ 08543, USA

The response of kinetic plasma profiles to 3D-field triggered edge localized modes (ELMs) and the inter-ELM impurity transport were analyzed in lithium-conditioned H-mode discharges in NSTX. The ability to control the size and frequency (f_{ELM}) of ELMs will be critical in future devices, such as ITER, in order to avoid impurity accumulation and damage to wall and divertor plasma facing components (PFCs) due to large ELMs. Edge impurity flushing increased with f_{ELM} , with a progressive reduction in the carbon density n_C inside the pedestal top. The ELM effect on the n_C profiles was reproduced in MIST simulations with an inward convective perturbation and an outward diffusive/convective perturbation (inside and outside normalized volumetric radii $R_{vot} = 0.6$, respectively). The increase in f_{ELM} progressively affected inter-ELM kinetic profiles, with electron pressure p_e inside the pedestal top reduced up to 40% for $f_{ELM}=60$ Hz. The agreement of inter-ELM carbon transport with neoclassical estimates improved with the increase in f_{ELM} , similarly to what observed in naturally ELMy discharges [1].

ELM-free lithium-conditioned H-mode discharges in NSTX were characterized by core accumulation of impurities as a result of near-neoclassical impurity transport, an edge inward impurity pinch and the absence of edge flushing mechanisms (e.g., ELMs) [1]. Accumulation of metallic impurities led to core radiated power reaching up to 50% of the injected power, while accumulation of carbon led to uncontrolled n_e . The combined use of lithium coatings for deuterium control and ELM-triggering (via 3D-fields or granule injection) to flush core impurities is one of the candidate density control strategies for the NSTX-Upgrade (NSTX-U). Non-axisymmetric magnetic perturbations (n=3) were applied in NSTX to trigger ELMs (f_{ELM} =10-62.5 Hz), and mitigate core impurity buildup maintaining the positive effects of lithium on energy confinement [2, 3, 4].

The increase in f_{ELM} progressively increased impurity flushing and modified edge plasma profiles. For ELMs triggered at 10Hz, carbon flushing was observed following the ELM crash for R_{voL} larger than 0.6. Up to a 30% drop in n_C was observed at the pedestal top, with comparable effects in the n_e , T_i , v_e profiles. While n_C profiles recovered within the 100 ms ELM cycle, the increase in f_{ELM} led to a reduction in the overall core carbon inventory N_C progressively affecting n_C at inner radii (Figure 1). In particular, N_C decreased by up to a factor of two for R_{vot} >0.5 with the increase in f_{ELM} while no decrease was observed inside R_{vot} ~0.5. While T_e profiles were mostly unchanged by the f_{ELM} increase, n_e and p_e were reduced up to 40% at Ψ_N =0.6 but unaffected in the steep gradient region (Figure 2).

Figure 1: Carbon density for an ELM-free discharge (left) and a discharge with 30 Hz triggered ELMs (right)

Transient perturbations to the steady state particle diffusivity D_C and convective velocity v_C were applied in the impurity transport code MIST to simulate the response of the n_C profile to ELMs. The equilibrium v/D ratio was inferred from the steady state n_C profiles and the absolute values were scaled by the neoclassical diffusivity. The experimentally observed increase in core n_C following the ELM was simulated with an inward convective perturbation for R_{vot} <0.6. An outward (diffusive/convective) perturbation for R_{vot} >0.6 was used in the simulation to reproduce the edge ELM flushing.

The agreement of inter-ELM carbon transport with neoclassical estimates improved with the increase in f_{ELM}. In NSTX H-mode discharges, intrinsic carbon transport was consistent with neoclassical estimates in ELMy discharges with boronized PFCs. Changes in T_i , n_D profiles due to the application of lithium led to changes in carbon neoclassical convection. However, a deviation of carbon transport from neoclassical estimates was evident at the top of the pedestal, where a predicted inward pinch was not observed experimentally [1]. The application of 3D-field triggered ELMs to naturally ELM-free discharges led to changes in n_e , T_i , v_{ϕ} with the v_{ϕ} and T_i normalized gradients increased by up to a factor of 3 at R_{VOL} ~0.6 and 0.7, respectively. The changes in T_i and n_D profiles due to triggered ELMs led to changes in carbon neoclassical transport coefficients comparable and opposite to those observed with the transition from ELMy boronized discharges to ELM-free lithiumconditioned discharges (Figure 3), resulting in a sign change in v_C at the top of the pedestal (from inward to outward convection). Concomitantly, better agreement between the neoclassical transport predictions (via the NCLASS code) and experimental n_C profile shapes was observed in lithium-conditioned discharges with triggered ELMs in a similar way to naturally ELMy discharges, as shown in Figure 4 from the comparison between experimental peaking factors ($\nabla n_c / n_c$) and the neoclassical v/D.

Figure 2: Evolution of inter-ELM kinetic profiles for $f_{ELM} = 10-60$ Hz

Figure 3: Carbon convective velocity as estimated from NCLASS for $f_{\rm ELM}\,{=}\,0{-}60$ Hz

Figure 4: Experimental peaking factors (Ln_C^{-1}) in black and neoclassical predictions for the v/D ratio based on NCLASS calculations in red: ELM-free (left), 40 Hz (center), 60 Hz triggered ELMs (right).

Work supported by US DOE contracts DE-AC02-09CH11466, DE-AC05-00OR22725, DE-AC52-07NA27344.

- [1] F. Scotti, et al., Nucl. Fusion 53 083001 (2013).
- [2] J.M. Canik, et al, Phys. Rev. Letter 104 (4), 045001(2010).
- [3] J.M. Canik et al., Nucl. Fusion 50 (3), 034012 (2010).
- [4] J.M. Canik, et al., Nucl. Fusion 50 (6), 064016 (2010).