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Control of toroidal rotation is an important issue for tokamaks and ITER since the rotation 
and its shear can significantly modify plasma stability from microscopic to macroscopic 
scales. An inevitably involved, but potentially promising, actuator for the rotation control is 
the non-axisymmetric (3D) magnetic perturbation, as it can be present intrinsically or 
purposely in tokamaks and can substantially alter 
toroidal rotation by neoclassical toroidal viscosity 
(NTV). The optimization of the 3D field 
distribution for the NTV and rotation control is 
however a highly complicated task, since NTV is 
mostly non-linear to the magnitude of the applied 
field with a complex dependency on the 3D field 
distribution. In this paper we present a new 
method that entirely redefines the optimizing 
process, by solving 3D equilibrium and NTV 
consistent with each other and constructing the 
so-called torque response matrix function. As 
shown in Figure 1, the NTV profile optimization 
can be achieved by a single code run based on the 
new method, with much better efficiency and 
accuracy than the previously successful method 
with stellarator optimizers [1]. 
The new, general perturbed equilibrium code 
(GPEC) solves the single-fluid quasi-neutral 
anisotropic pressure perturbed equilibrium in the 
first gyro-radius ordering; 𝐹 𝜉 = 𝛿𝑗×𝐵 + 𝑗×𝛿𝐵 + ∇ ∙ 𝜉 ∙ ∇𝑝 − ∇ ∙ 𝛿Π = 0  from a 
Maxwellian plasma in axisymmetry. NTV torque comes from the toroidal component of the 
anisotropic pressure force ∇ ∙ 𝛿Π , and the net torque arises at the second order in 
perturbation from the surface average on perturbed flux surfaces. The anisotropic pressure 
force ∇ ∙ 𝛿Π that appears in the force balance has the same kinetic origin as that in the NTV, 
but is the first order change locally inducing torque distribution and non-ambipolar currents 
that can modify the field penetration. If NTV is calculated based on the 𝛿𝐵 established by 
this anisotropic perturbed equilibrium, both transport and equilibrium calculations will be 
consistent with each other. This force operator, however, is no longer self-adjoint due to the 
finite toroidal torque, and therefore must be solved directly for each of three components, 
rather than using the variational method with 𝛿𝑊 that is popular in equilibrium calculations. 
Nevertheless, the direct treatment yields the modified kinetic Euler-Lagrange equation 
𝐹Ξ!′+ 𝐾!Ξ!

! − 𝐾!!Ξ!! + 𝐺Ξ! = 0 , similarly to self-adjoint case. Here Ξ!  is the 
vector containing Fourier components of radial displacements and 𝐹,𝐾,𝐺 are matrices 

Figure 1. Optimized torque profile to maximize 
torque in ψ<0.5 while minimizing torque in 
ψ>0.5 for an NSTX-U target, using GPEC vs. 
stellarator optimizers coupled with IPEC. 
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containing fluid and kinetic contributions. For IPEC and DCON, 𝐹,𝐺 matrices become 
Hermitian and 𝐾! = 𝐾!, and in cylindrical geometry it becomes the Newcomb equation 
with the matrices being scalar.  

By integrating energy and torque, one can show 2𝛿𝑊 + !!!
!
= − 𝜉 ∙ 𝐹 𝜉 = Ξ!! ∙𝑊! ∙ Ξ!, 

in which only the surface term remains since the volumetric term vanishes by the force 
balance. The anti-Hermitian part of the plasma response matrix function 𝑊!(𝜓) is the 
torque response matrix function Τ(𝜓), which provides the self-consistently calculated NTV 
in any point of radius as the quadratic form involving the external field Φ on the control 
surface, i.e. Φ! ∙ Τ ∙Φ. Given  Τ(𝜓), one can immediately answer various questions for 
optimization. An important example is the maximum (or minimum) torque possible for any 
arbitrary interval (𝜓!,  𝜓!), and corresponding 3D field distribution, with the integrated total 
torque up to the boundary 𝜓!   

fixed. The answer is the maximum (or minimum) eigenvalue 
and eigenvector of the composite matrix Τ!! 𝜓! Τ 𝜓! − Τ 𝜓! . The example shown in 
Figure 1 is obtained by simply calculating the first eigenvector of this matrix for 0<  𝜓 <0.5, 
and applying it to plasma as an external field on the boundary. Furthermore, the 

eigenvectors provide a way to properly order and 
decompose 3D fields with respect to local torque. In 
many cases, it has been shown that negative poloidal 
modes (backward helicity modes) play an important 
role in balancing the positive poloidal modes for local 
torque optimization. The access to the optimized field 
distribution is of course limited in practice by 
available coils, but it is also straightforward to couple 
the coils to the torque matrix function and optimize 
the current distributions in the coils, as has been 
actively studied in KSTAR with existing internal 
coils, and also in NSTX-U with non-axisymmetric 
control coils (NCC) and in ITER with error field and 
ELM control coils under design. 
NTV torque profiles obtained by this method are self-
consistent across equilibrium and transport, which can 
be very important whenever local or global torque is 
substantial, due to the strong toroidal phase shift in 
response and consequent inefficiency in coupling 
between plasma and external field. This is called the 

self-shieling process [2] as illustrated in Figure 2, which can significantly change NTV 
predictions. In fact, the importance of self-consistent calculations with ∇ ∙ 𝛿Π  in 3D 
response has been highlighted by recent MARS-K applications to DIII-D [3] and NSTX. In 
principle, MARS-K and GPEC should provide the same results in the zero-frequency limit, 
and this has been successfully verified in this work. The unique feature of GPEC is the full 
eigenmode structure of 3D plasma response consistent with ∇ ∙ 𝛿Π and neoclassical toroidal 
torque, which thereby provides a new and systematic way of optimization for NTV and 
non-resonant fields.  
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Figure 2. Perturbative NTV with IPEC 
vs. self-consistent NTV with GPEC for 
an NSTX-U target, as a function of 
E×B. Subfigures show plasma response 
to the applied 3D field for each. 
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