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Characteristic	 edge	 localized	 mode	 (ELM)	 evolution	 patterns	 are	 identified	 and	
measured	at	Alfven	timescales	with	a	multi-point	beam	emission	spectroscopy	(BES)	di-
agnostic	on	NSTX/NSTX-U,	and	parameter	regimes	corresponding	to	 the	characteristic	
ELM	evolution	patterns	are	identified.		The	linear	peeling-ballooning	stability	boundary	
expresses	 an	 onset	 condition	 for	 ELMs,	 but	 ELM	 saturation	mechanisms,	 filament	 dy-
namics,	and	multi-mode	interactions	require	nonlinear	models.	Validation	of	nonlinear	
ELM	models	requires	 fast,	 localized	measurements	on	Alfven	timescales.	 	Recently,	we	
investigated	 characteristic	 ELM	 evolution	 patterns	 with	 Alfven-scale	 measurements	
from	the	NSTX-U	beam	emission	spectroscopy	(BES)	system	[1].		We	applied	clustering	
algorithms	from	the	machine	learning	domain	to	ELM	time-series	data.		The	algorithms	
identified	two	or	three	groups	of	ELM	events	with	distinct	evolution	patterns.			In	addi-
tion,	we	found	that	the	identified	ELM	groups	correspond	to	distinct	parameter	regimes	
for	plasma	current,	 shape,	magnetic	balance,	and	density	pedestal	profile	 [1].	 	The	ob-
served	evolution	patterns	and	corresponding	parameter	regimes	suggest	genuine	varia-
tion	in	the	underlying	physical	mechanisms	that	influence	the	evolution	of	ELM	events	
and	motivate	nonlinear	MHD	simulations.		Here,	we	review	the	previous	results	for	ELM	
evolution	patterns	and	parameter	regimes,	and	we	report	on	a	new	effort	to	explore	the	
identified	ELM	groups	with	2D	BES	measurements	and	nonlinear	MHD	simulations.		Fi-
nally,	we	discuss	opportunities	to	leverage	machine	learning	tools	in	the	data-rich	fusion	
science	field.	
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