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Verified, validated energetic particle (EP) models 
are required in integrated tokamak simulations
EPs (alphas, NB ions, RF tails) provide main source of
heating, momentum, current drive in burning plasmas

– But: EPs drive instabilities, instabilities affect EPs

NSTX-U #204202
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*AE: Alfvén Eigenmode
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Modeled NB driven current

This work: reduced EP 
transport models being 
developed, validated for 
time-dependent 
predictive simulations
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Layout

• Overview of main modeling tools

• Summary of results

• Future work & conclusions
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TRANSP code is the main platform
for Integrated Simulations

• NUBEAM module accounts for (neo)classical EP physics
– Includes scattering, slowing down, atomic physics

NUBEAM step k

Classical EP physics:
apply scattering, slowing 

down; update sources
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TRANSP (main) TRANSP (main)

May be inaccurate if EP transport is enhanced by instabilities



With instabilities, additional physics is required
for quantitative simulations

• NUBEAM module accounts for (neo)classical EP physics
– Includes scattering, slowing down, atomic physics

NUBEAM step k

Classical EP physics:
apply scattering, slowing 

down; update sources
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TRANSP (main) TRANSP (main)

Ad-hoc transport models: often unphysical -> no predictive capabilities!

Ad-hoc EP diffusivity:
e.g. adjusted to match 

neutron rate



Kick and RBQ-1D reduced models address EP 
transport in time-dependent integrated simulations

• NUBEAM module accounts for (neo)classical EP physics
– Includes scattering, slowing down, atomic physics

NUBEAM step k

Classical EP physics:
apply scattering, slowing 

down; update sources
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TRANSP (main) TRANSP (main)

New physics-based models enable predictive capabilities

Phase-space resolved 
reduced EP models:

‘kick’, RBQ-1D

Podestà PPCF 2014, PPCF 2017; Gorelenkov NF 2018



Constants of Motion variables are used to 
describe resonant wave-particle interaction

Each orbit characterized by:
E, energy
Pz~mRvpar-qY, canonical momentum
µ~vperp

2/B, magnetic moment

Wave stability (drive):

R. B. White, Theory of toroidally confined plasmas, Imperial College Press (2001)

• Complex orbits in real space translate in simple 

trajectories in phase space
• Resonant interactions obey simple rule:

w=2pf : mode frequency

n : toroidal mode number
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Constants of Motion variables are used to 
describe resonant wave-particle interaction

Each orbit characterized by:
E, energy
Pz~mRvpar-qY, canonical momentum
µ~vperp

2/B, magnetic moment

Wave stability (drive):

• Resonant interactions obey simple rule:

Define transport matrix(es) for NUBEAM:
p(DE,DPz |E,Pz,µ)

“Conditional probability that a particle at (E,Pz,µ) 
receives kicks DE, DPz from wave-particle interaction”
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• Complex orbits in real space translate in simple 
trajectories in phase space

w=2pf : mode frequency
n : toroidal mode number



RBQ-1D and kick models distill physics of wave-
particle interaction for its inclusion in p(DE,DPz)

• Both models use mode structure, damping rate from 
MHD codes, e.g. NOVA/NOVA-K
– Input: thermal profiles, equilibrium

• RBQ-1D based on resonance-broadened quasi-linear 
theory for wave-particle interaction: 
– Use “diffusive transport” approximation -> gaussian p(DPz | E,Pz,µ)
– 1D: transport along canonical momentum Pz dominates
– Computationally efficient

Gorelenkov NF 2018
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Kick model: particle-following ORBIT code used
to infer transport matrix numerically

Perturbation from 
NOVA code

Podestà PPCF 2017
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Initialize test 
particles uniformly 
in phase space



Kick model: particle-following ORBIT code used
to infer transport matrix numerically

Track energy, 
momentum 
variations (kicks) at 
fixed time intervals

Perturbation from 
NOVA code
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Initialize test 
particles uniformly 
in phase space



Kick model: particle-following ORBIT code used
to infer transport matrix numerically

Perturbation from 
NOVA code

p(DE,DPz )
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Combine DE, DPz
from same (E,Pz,µ) 
phase space bin
into p(DE,DPz )

Track energy, 
momentum 
variations (kicks) at 
fixed time intervals

Podestà PPCF 2017

Initialize test 
particles uniformly 
in phase space



Kick model: particle-following ORBIT code used
to infer transport matrix numerically

Initialize test 
particles uniformly 
in phase space

Combine DE, DPz
from same (E,Pz,µ) 
phase space bin
into p(DE,DPz )

Repeat for all (E,Pz,µ) 
bins to infer 5D matrix
-> input for NUBEAM: 
p(DE,DPz |E,Pz,µ)

Perturbation from 
NOVA code
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rms energy change

Track energy, 
momentum 
variations (kicks) at 
fixed time intervals

p(DE,DPz )

Podestà PPCF 2017

localized
resonances



Models can be used for both interpretive
and predictive simulations

Interpretive runs:
Ø To validate EP models, analyze actual 

discharges
• Use experimental info to set DE, DPz

– E.g. based on neutron rate, internal 
measurements of mode amplitude
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classical TRANSP run

measured

increase
kicks

Podestà PPCF 2017



Models can be used for both interpretive
and predictive simulations

Interpretive runs:
Ø To validate EP models, analyze actual 

discharges
• Use experimental info to set DE, DPz
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Predictive runs:
Ø To optimize/explore new scenarios
• Use saturation condition to set DE, DPz

– Impose drive = damping vs time

classical TRANSP run

measured
Main limitation:
• Can be only as good as damping rate 

estimates!

Podestà PPCF 2017

reduced input from experiment

drive from NUBEAM 
or RBQ-1D

damping from NOVA-K

increase
kicks

Many practical cases lie in between ‘fully interpretive’ & ‘fully predictive’



Layout

• Overview of main modeling tools

• Summary of results: from validation/analysis to predictions
– Single-mode scenarios

• NTM only: single dominant mode, few resonances in EP phase space
• AEs only: many modes of same type, many resonances

– Multi-mode scenarios
• AEs + fishbones + kinks: multiple types of modes, many resonances

– Example of predictive capabilities

• Future work & conclusions
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DIII-D discharge with large NTM provides
a good test bed for EP transport models

• NTMs destabilized by step-up 
in NB power
– Dominant 2/1 in this case

• Large NTM amplitude causes 
EP confinement degradation
– Clear drop in neutron rate

DIII-D #170247

magnetic fluctuations

NTMs

Heidbrink NF 2018 Bardóczi PoP 2017 Poli NF 2017 Bardóczi PPCF 2018 (submitted)
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Interpretive analysis reproduces experiment, 
matches direct measurements of NTM island width
• Kick “interpretive” run:

– Scale kicks to match measured neutrons
– Mode amplitude related to wisland

• Inferred NTM island width agrees with 
measured wisland from ECE
– a posteriori check, validation
– Path towards ‘predictive’ simulations with 

wisland from Modified Rutherford Equation
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• Kick “interpretive” run:
– Scale kicks to match measured neutrons
– Mode amplitude related to wisland

• Inferred NTM island width agrees with 
measured wisland from ECE
– a posteriori check, validation
– Path towards ‘predictive’ simulations with 

wisland from Modified Rutherford Equation

• Favorable comparison with phase-
space resolved data (FIDA)
– Acceptable for co-passing, good for 

counter-passing
– Key exercise for model validation

• Ad-hoc diffusion would give same drop for co/cntr

Analysis gives reasonable agreement
with phase-space resolved diagnostics
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Kick & RBQ-1D successfully benchmarked for 
scenario with multiple unstable AEs

• AEs selected based on experimental data from ECE, Mirnov coils
• Amplitudes inferred around t=800ms

– Adjusted vs time to match measured neutron rate
Gorelenkov NF 2018
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Successful comparison with phase-space
resolved data (FIDA, NPA) validates models

• Simulation can also reproduce 
dynamic response to NB modulation

• Less favorable comparison with 
FIDA using updated calibration
– Need to work closely with 

experimentalists

• Retaining phase space resolution is 
critical for validation

Heidbrink PoP 2016
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Towards predictive simulations:
need estimate of unstable spectrum, saturated amplitudes

NB power [MW] neutron rate [au]

TAEs

fishbones
kink

TAEsRSAEs
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• Need estimate for relative AE 
amplitudes:
– Use saturation condition 

(drive=damping) to infer AE 
amplitudes vs time

• Then, rescale fishbone &  kink 
amplitudes to match measured 
neutron rate
– No damping available (yet)

NSTX-U #204202



Analysis provides assessment of role of different 
instabilities on EP transport, NB driven current

• AEs and fishbones/kinks cause comparable drop in neutrons
– Fishbones, kinks are mostly responsible for NB ion density depletion
– AEs have larger effect on NB ion energy redistribution

• Synergy between modes is observed, e.g. in total EP losses
10/18/18 Reduced EP transport models for integrated simulations (M. Podestà, IAEA-FEC 2018) 24

NB densityNSTX-U #204202
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Reduced-physics EP transport models enable 
quantitative, time-dependent tokamak simulations

• Verification & Validation being extended for kick & RBQ-1D
• Extend RBQ to 2D (canonical momentum & energy)

• Reduced models enable efficient simulations retaining (most of) the 
relevant EP physics
• Including predictive capabilities (ITER & beyond)

• Phase-space resolution is required to move beyond ad-hoc models
• Critical for heating, current drive, thermal transport

• Goal: develop framework to streamline TRANSP analysis including 
effects of instabilities on EPs
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Backup
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Reasonable agreement also found for scenario
with multiple unstable Alfvén Eigenmodes

• Mix of Toroidal and Reversed-shear AEs observed

• Large neutron deficit indicates substantial fast ion 
transport

Heidbrink PoP 2016
Collins PRL 2016
Collins NF 2017
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Predictive analysis (AEs) results generally agree 
within +/-15% with interpretive simulations

Relative difference from interpretive simulations: NSTX, NSTX-U and DIII-D database
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• However: in some cases, predictive runs 
fail to reproduce experiments!
– Predicted AE spectrum differs from 

experiment
– Key role of damping rate from MHD codes

• Affects inferred AE saturation amplitude

• More validation is required to assess 
model limitations, missing physics

interpretive kick model



Predictive analysis: test kick model
on challenging NSTX-U discharge

• Examples from NSTX-U scenario
– Transition from co- to counter-TAEs as NB ion density profile becomes flat or hollow
– Complex scenario, simulations are challenging

• Most quantities evolve in time, not suitable for “single-time-slice” analysis

Podestà NF 2018
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Predictive analysis recovers overall properties
of measured instabilities

– Reproduces main features of the experiment
– Reproduces transition co- to counter-TAEs
– Capture time evolution of unstable modes, spectrum, …

co-TAEs only co- and cntr-TAEs
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Successful comparison with phase-space resolved 
data (FIDA, NPA)

• Retaining phase space resolution is important
– Localized resonances result in “fine structures” in fast ion distribution,
profiles
• Comparison with FIDA: phase space resolution crucial for validation

Agreement extends to  response to 
NB modulation
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