

Active conditioning of ASDEX-Upgrade tungsten PFCs through boron particulate injection (FIP/2-3)

R. Lunsford¹, V. Rohde², A. Bortolon¹, A. Drenik², R. Dux², A. Herrmann²,
A. Kallenbach², R. M. McDermott², R. Maingi¹, D.K. Mansfield¹, A. Nagy¹,
R. Neu², E. Wolfrum² and the ASDEX-Upgrade team

¹Princeton Plasma Physics Laboratory, Princeton, NJ, USA ²Max Planck Institute for Plasma Physics, Garching, Germany

27th IAEA Fusion Energy Conference, 22-27 October 2018, Gandhinagar, India

OPPPL "Real-Time" boronization through powder injection

- Plasma assisted wall conditioning uses solid B compounds instead of toxic and explosive B₂D₆ gas
- Deposition of B powders extends the effective lifetime of boronization coatings
 - Allows density-controlled, high-purity plasmas with reduced wall fueling and mitigated High-Z impurity sources
 - Maintains controlled wall conditions over a run campaign
 - Could be used to provide active boronization for future long pulse discharges

- I. Experimental Apparatus
- II. Boron Injection Experiments
 - a) Boron Nitride Injection Series
 - b) Boron Injection Series

OPPPL Impurity powder dropper (IPD)

- Multi-impurity injection system based on linear piezoelectric powder feeder
- 4 feeders with separate reservoirs (30 ml) around central drop tube
- Tested with multiple materials
 - B, BN, Li, Si, SiC, Sn...
 - particle size 5-100 µm
 - calibrated rates 2-200 mg/s
- Injection calibrated with accelerometer, optical flow-meter confirms mass injection rate

IAEA FEC October 22-27 2018 FIP/2-3

Hopper

Flexure

Mounting Base

A. Nagy et al., Rev. Sci. Instr. *at press* 2018

Channel

Piezos

Feeder with hopper

carbon steel

Piezo ends)

- 2.5 m drop tube connects IPD with crown of AUG discharge
- Chamber 1 loaded with 5 μm BN powder
- Chamber 2 loaded with 70 μm B powder

- I. Experimental Apparatus
- II. Boron Injection Experiments
 - a) Boron Nitride Injection Series
 - b) Boron Injection Series

PPPL B/BN injected into conformal discharges to enhance coating

- Wall-conditioning discharge with conformal shape
 - SOL surfaces parallel to antenna limiter
- ELM-y H-mode discharges with $I_P = 0.8$ MA, $B_T = 2.5$ T, $P_{NBI} = 10$ MW, $P_{EC} = 0.8$ MW, $n_e = 6.5 \times 10^{19}$ m⁻³
- Conditioning effects inferred from visible spectroscopy
 - Line emission from BII, OII, WI assumed representative of wall source
 - Views for divertor (DVL) and limiter (LVL)
- W impurity influx from ICRH antenna limiter inhibits low-collisionality operation
 - D₂ puff required to maintain robust ELM frequency

ASDE>

Upgrade

ASDE>

- I. Experimental Apparatus
- II. Boron Injection Experiments
 - a) Boron Nitride Injection Series
 - b) Boron Injection Series

	ASDEX	Injection	Quantity of boron	Cumulative	
	Discharge	Species	injected (atoms)	boron injection	
	34796	BN	1.7x10 ¹⁹	1.7x10 ¹⁹	
	34798	BN	1.7x10 ²⁰	1.9x10 ²⁰	
	34799	BN	3.5x10 ²⁰	5.4x10 ²⁰	
	34801	BN	1.6x10 ²¹	2.2x10 ²¹	
	34803	BN	1.4x10 ²¹	3.6x10 ²¹	
1680cc S34883	9 7216 724 292				
1					

BN input from 3.8-4.9 s N radiation dominates, No N latency B radiation at limiter and divertor

R. Lunsford, V. Rohde et al.,

ASDEX Upgrade

PPPL BN increases confinement similar to N₂

- #34802 : Control Discharge
- #34799 : 9 mg/s
 - 5% increase of $\rm n_{e}$ and $\rm P_{rad}$
 - Stored energy W_{MHD} unchanged
- #34801 : 52 mg/s
 - $\,n_{e}$ +25% and P_{rad} +80%
 - W_{MHD} increases until core mode destabilized ($\beta_N \sim 2.7$)
 - Confinement improvement associated with pedestal recovery
 - <u>Greater coupling to discharge than</u> seen with N2 gas puff

A. Bortolon et al., Submitted J. Nucl. Mater. Energy 2018

R. Lunsford, V. Rohde et al.,

ASDEX

Upgrade

- I. Experimental Apparatus
- II. Boron Injection Experiments
 - a) Boron Nitride Injection Series
 - b) Boron Injection Series

ASDEX Upgrade

Metallic Boron Injection Series

PPPL Boron injection well tolerated by plasma

- ELMy H-modes, f_{ELM}~70-100 Hz
 10 MW NBI, 1.2 MW ECRH
 - D₂ fueling throughout
- #34825 : B injection, 75 mg/s
 - Modest ~5% increase of n_e
 - Oscillations due to fluctuations in drop rate (B clumping)
- P_{rad} increase by 20%
- No effect on stored energy $W_{\rm MHD}$

A. Bortolon et al., Submitted J. Nucl. Mater. Energy 2018

ASDE>

Upgrade

- I. Experimental Apparatus
- II. Boron Injection Experiments
 - a) Boron Nitride Injection Series
 - b) Boron Injection Series

PPPL Low-density test shot shows slight improvement

#34797 : ~3.7 x 10¹⁸ B atoms injected **#34800** : ~1.3 x 10²⁰ B atoms injected **#34810** : ~5.8 x 10²¹ B atoms injected

- Due to wall conditions test discharge scenario is unstable w/o gas puff
 - Core MHD
 - P_{rad} runs away
 - Radiative collapses \rightarrow disruption
- After BN/B injection MHD persists
 - P_{rad} run away is avoided
 - Plasma sustained to completion

Wall condition observables improve during test-shot series

Impurity source estimated from

- time-average of line emission
 - BII, OII and WI
- B from limiter increases → B coating
- O from limiter decrease \rightarrow O gettering
- W source decreases for >100 mg B
- Similar trends observed in divertor

PPPL Boron injection assists successful RMP ELM suppression

- 1. Total boron injected : 330 mg
- 2. #34826 : Attempted ELM-suppression
- D₂ puff stopped at t=2.25s
- n = 2 RMP from 2.5 7 s
- Full-shot ELM suppression achieved
 - Sufficient n_e pump-out maintained
 - 3 consecutive discharges
- Slow increase in P_{rad} and W radiation
 - Impurity sources recovering on discharge time-scales
- Need to confirm B injection is responsible

BN and B powder both successfully injected into auxiliary heated AUG plasmas

Boron Nitride:

- Observed increased B & N flux from limiters & divertor
- P_{rad} increased by > 100% at highest rates
- At high injection rates, confinement and stored energy increased by 20-30%, as observed with N_2 puffing
- Crashed at $\beta_N > 2.7$

Elemental Boron

- Observed increased B flux from limiters & divertor
- P_{rad} increased by 50% at highest rate
- Discharge stable, B injection limit not reached

OPPPL Conclusions and Outlook

- Initial AUG experiments suggest that boron powder injection can be used to augment borization coating during tokamak operation
 - Successful modification of edge impurity levels
 - Successful access to low density for RMP ELM suppression
 - Upcoming experiments planned to corroborate results and optimize technique
- Particulate wall conditioning could aid steady-state operation where initial coatings will erode rapidly
- IPD has been/is being installed on other devices
 - DIII-D results to be presented at APS 2018
 - Successful horizontal B_4C injection into W7-X
 - Experiments on EAST, KSTAR to address applicability to long pulse operation

ASDE

Upgrade

R. Lunsford, V. Rohde et al.,

Supplemetal Information

RGA Comparison of BN injection and N₂ gas puff

Performance enhancement observed with BN similar to $\rm N_2$ gas puff

PPPL

Greater coupling to discharge with smaller Nitrogen quantity

Reduction in Ammonia quantity

Suggestive of NH₃ mitigation possibilities for JET & ITER to prevent tritium sequestration

Full behavior not well understood, further study required

R. Lunsford, V. Rohde et al.,