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Motivation and Outline

« A main challenge for reactor designs is ability to

exhaust large divertor heat loads, steady & transient
— Handling neutron damage and PMI difficult for solid PFCs

« EAST and FTU are exploring flowing liquid PFCs

— Liquid metal PFCs are part of European roadmap, and US and
Chinese PFC strategies
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Motivation and Outline

A main challenge for reactor designs is ability to

exhaust large divertor heat loads, steady & transient
— Handling neutron damage and PMI difficult for solid PFCs

EAST and FTU are exploring flowing liquid PFCs

— Liquid metal PFCs are part of European roadmap, and US and
Chinese PFC strategies

EAST: 3 generations of flowing liquid lithium limiters

— Reduced recycling, ELM mitigation, improved power exhaust
and compatibility with increasing P_,,,, |

aux’ 'p
— Also new results on lithium powder injection for ELM control

FTU: comparing liquid tin and liquid lithium limiters
— Good performance for liquid tin with g ¢, ~ 18 MW/m?
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Amelioration of plasma-material interactions and
improvement of plasma performance with a flowing
liquid Li limiter and Li conditioning on EAST
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The science and technology of flowing liquid lithium limiters
has been advanced via US-PRC PMI collaboration on EAST

* Three generations of liquid lithium
limiters tested in EAST _—
— Prototype SS plate tested in HT-7

. - Distributor box
— Gen. 1 (12/2014) tested in EAST i \ ﬁ

\ Li outflow from channels

— Gen. 2 (1 2/201 6) tested in EAST Collector Distributor channels

— Gen. 3 (8/2018) tested at UI-UC and  PCPMpume —
PPPL and then EAST

B

Generation Heat Sink SS thickness JxB Max. P, Max. qey Max. Wyip
(mm) pumps (MW) (MW/m?) (’9))
1 Cu + SS 0.1 1 1.9 3.5 120
2 Cu + SS 0.5 2 4.5 4 170
3 Mo (TZM) NA 2 8.3 TBD 280
;'.‘i\ I _ . .
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1st Generation flowing liquid lithium limiter compatible with H-
mode discharges in EAST (10/2014)
—3B B,

_—
\ Feed pipe

« Cu heat sink, SS coating
— Top distributor, many holes

. . Distrib box
- Free surface gravity driven —> | srbwtor >
flow on front face e
- J X B pump reCirCUlateS LI \ Li outflow from channels

Distributor channels

* Inserted at midplane on Collector
MAPES system DC EM pump

J. Ren, Rev. Sci. Instrum. 86 (2015) 023504
J.S. Hu, Nucl. Fusion 56 (2016) 046011
EZIN r G.Z. Zuo, Nucl. Fusion 57 (2017) 046017
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1st Generation flowing liquid lithium limiter compatible with H-
mode discharges in EAST (10/2014)

« Cu heat sink, SS coating
— Top distributor, many holes Feed pipe

I i | A Distrib box
- Free surface gravity driven —> | stributor bo
flow on front face S;ige/ :

- J X B pump reCirCUlateS LI \ Li outflow from channels

* [nserted at midplane on Collector
MAPES system DC EM pump

B,

Distributor channels

Li tank

Limiter

Exchange box

— Bellow
A\ | /4 ﬁl‘-

H port
J. Ren, Rev. Sci. Instrum. 86 (2015) 023504
J.S. Hu, Nucl. Fusion 56 (2016) 046011
EZIN r G.Z. Zuo, Nucl. Fusion 57 (2017) 046017
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1st Generation flowing liquid lithium limiter compatible with H-

mode discharges in EAST (10/2014)

Bt
—_—

Feed pipe

Cu heat sink, SS coating
— Top distributor, many holes

- Free surface gravity driven >\ Distributor box
flow on front face e
— j x B pump recirculates Li \| L outflow from channels
Inserted at midplane on Bl Distributor channels

DC EM pump —

MAPES system
H-modes and ohmic
discharges compatible with
flowing Li limiter

- qpeaklimiter ~ 35 MW/mZ
Limiter and distributor
damaged during operations,
so new design implemented

Li tank

Limiter

Exchange box

J. Ren, Rev. Sci. Instrum. 86 (2015) 023504

for Gen. 2 J.S. Hu, Nucl. Fusion 56 (2016) 046011
y r G.Z. Zuo, Nucl. Fusion 57 (2017) 046017
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2"d Generation flowing liquid lithium limiter (2016) had design
upgrades compared to 1st generation limiter (2014)

» Improved distributor manufacturing _

reS | I | e nt to Cra Ckl n g ; p I u S Distributor before Li operation in 2014

— Two parallel paths for jxB pumps to pump
I|qU|d I_I up the baCk Slde Distributor before Li operation in 2016

— ox thicker stainless steel protective layer

G. Zuo, Rev. Sci. Instrum. 88 (2017) 123506
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2"d Generation flowing liquid lithium limiter (2016) had design
upgrades compared to 1st generation limiter (2014)

» Improved distributor manufacturing
resilient to cracking, plus

— Two parallel paths for jxB pumps to pump
liquid Li up the back side

— ox thicker stainless steel protective layer
« Improved surface texturing led to

improved wetting and surface
coverage

Distributor before Li operation in 2014

e SN B A LR L A oy e R
Axsasasasssnnnanvannnes
R o TN P IR VBT oot I

Distributor before Li operation in 2016

— <30% in 2014 —
— >80% in 2016 —

G. Zuo, Rev. Sci. Instrum. 88 (2017) 123506
FZ vy v
| A -
!!=\ 4 4 IAEA FEC 2018: Gandhinagar, India

10



2"d Generation FLiLi lithium limiter performed well in auxiliary
heated discharges in EAS

AN

Limiter placed within 1 cm of £s,
separatrix in RF-heated H-modes .
FLILi exposed to Py, < 4.5 MW—__ = *
— Qpeak ~ 4 MW/m?2 £3

— No limiter damage observed after 3

first plasma exposure g ER

— Limiter re-exposed and flow re-
started a week after first experiment

4
4 4 IG. Zuo, Nucl. Fusion submittedIAEA FEC 2018: Gandhinagar, India
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2"d Generation FLiLi lithium limiter performed well in auxiliary
heated discharges in EAS

« Limiter placed within 1 cm of
separatrix in RF-heated H-modes

* FLiLi exposed to P, < 4.
— Qpeak ~ 4 MW/m?
— No limiter damage observed after
first plasma exposure
— Limiter re-exposed and flow re-
started a week after first experiment

* Progressive conditioning and
ELM mitigation with limiter
inserted at midplane

TN
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2"d Generation FLiLi lithium limiter performed well in auxiliary
heated discharges in EAST

» Limiter placed within 1 cm of £5ul
separatrix in RF-heated H-modes . "%
+ FLiLi exposed to Py, < 4.5 MW—__ =
— Qpeak ~ 4 MW/m? €3
— No limiter damage observed after IR
first plasma exposure S S '
— Limiter re-exposed and flow re- . : " : ; .
started a week after first experiment Auxiliary heating power (MW)
* Progressive conditioning and gf T T .
ELM mitigation with limiter 3 IRV POR
inserted at midplane £ Ml s
« Concern over Li— Cu T
reactivity underpins Gen. 3, WWMWWWWWMMW
made out of TZM, a Mo alloy T Ll

' | 4 25 2.7 29 3.0 3.2
. . Time(s
4 4 G. Zuo, Nucl. Fusion submittedIAEA FEC 2018: Gandhinagar, India ) 250ct2018 13




EAST: 3 generation flowing liquid Li limiter fabricated;
shipped to EAST 6/18 and exposed to plasma 8/18

« Made of Mo for Li compatibility o
— One plate sent to EAST, second plate 373 .
sent to UI-UC for testing in HIDRA ol
— Extensive heater testing at UI-UC .3
— Stainless steel distributor and °¢ LFLILi A
collector brazed onto plate o S =
« Experiment in 8/18 exposed FLiLi 3 | J mm
limiter to plasmas with P_,,=8.3 R I S
Time (s)

MW @ 3cm from separatrix
— Reduced recycling, slightly higher
stored energy, (ELM mitigation)

rr R. Maingi, IAEA FEC 2018
IAEA FEC 2018: Gandhinagar, India 250c¢t2018 14




EAST: 3 generation flowing liquid Li limiter fabricated;
shipped to EAST 6/18 and exposed to plasma 8/18

« Made of Mo for Li compatibility o
— One plate sent to EAST, second plate =73 |
sent to UI-UC for testing in HIDRA -

— Extensive heater testing at UI-UC

— Stainless steel distributor and %< | FLiLi WO,
collector brazed onto plate B = i e
 Experiment in 8/18 exposed FLiLi 3 | i/: My
limiter to plasmas with P, ,=8.3 R I S
Time (s)

MW @ 3cm from separatrix
— Reduced recycling, slightly higher

stored energy, (ELM mitigation) @
— Future versions: 3D printed W PFC, al S |
limiter and/or divertor sector(s)? aal |

145 15 155 16 165 1.7 1.75 18

rr I R. Maingi, IAEA FEC 2018 R (m)

-0.9 r

Z(m)
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ELMs eliminated with real-time Li powder injection into the W
upper divertor in EAST

« Powder injected outboard of
X-point in upper SOL
— Injector uses vibrating piezo-
electric disk to inject controlled
amounts of powder
— Similar technology used for B
injection in AUG (Lunsford,

2
S
%
\ m
1.5 2 2.5
R (m)
N vy R. Maingi, Nucl. Fusion 58 (2018) 024003; builds on J.S. Hu, Phys. Rev. Letts. 114 (2015) 055001
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ELMs eliminated with real-time Li powder injection into the W

upper divertor in EAST

« Powder injected outboard of
X-point in upper SOL
— Injector uses vibrating piezo-
electric disk to inject controlled
amounts of powder
— Similar technology used for B
injection in AUG (Lunsford,

Dq(au)
o N N (o)}

1(a)

Dq(au)
o N N (9)]

70597

1(b)

- v\

NB blips

FIP/2-4) _ 61(c) NB blips
 Progressive reduction of =
recycling and elimination of 0 —
ELMs N j @ Li powder
— Stored energy reduced by < = injection
10%, because injection rate 0 6»25 e e—
was higher than needed Cam Time (s)

y v
4 4

R. Maingi, Nucl. Fusion 58 (2018) 024003; builds on J.S. Hu, Phys. Rev. Letts. 114 (2015) 055001
250ct2018 17
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Real-time Li powder injection also suppressed W influx
on EAST

« Control of high-z influx
. . Li-II (a.u.)
a need for devices with | e Gro0ss ~ [
1 X w/o Li
metallic PFCs '

- Often need D or impurity | | sy
gas puffing to reduce ) T T
target temperature and wiLi ’
sputtering s #0001 |
- Real-time Liinjection | [ "~
reduced W-I line T Wi
emission Y =y _ Py -
- Effect persists forsome | ™" T : (
time after Li injection %0 r 4 6 5 o 2o a0 e s
Time (s) Time (s) Time (s)

stopped
e W. Xu, Fusion Eng. Design 137 (2018) 202
'ssi\\ 4 4 I IAEA FEC 2018: Gandhinagar, India 250ct2018 18
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Liquid metal limiters tested in FTU since 2006

Performance with tin liquid limiter
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Liquid Tin Limiter - TLL

A tin liquid limiter has been used for the first time in a tokamak

» Capillary porous
system used to
contain Sn

* Very flexible and
versatile layout: the
limiter head can be
easily changed

« At high temperature
tin is very corrosive:

7

i I

] D k_\\;ﬁ

= =
N

7|

Langmuir probes

Molybdenu pipe the liquid tin limiter
« Tin allows a wide temperature operational layout prevents
window with low vapor pressure copper corrosion

m IAEA FEC 2018: Gandhinagar, India 250c¢t2018 21



Tin has a wide operational temperature window

" [1/m3s]
1028
« Evaporative flux is one of the main -
Issue for steady state operation 10
102
 One of the aim of the experiments
. . . . 10%
iIn FTU s to investigate the , K
. . . 0 500 1000 1500 2000
operational window both for tin and

e

TIK]

1200
1000

800

lithium
1600 == Tin
e Lithium
1400

"

600

1.E+19 1.E+20 1.E+21 1E+22 1.E+23 1E+24

Evaporation rate [m?s™]
[J.W. Coenen et al.

IAEA FEC 2018: Gandhinagar, India Phys. Scr. T159 (2014) 014037] 250c¢t2018 22



Characteristics of TLL compared with previous LLL

Lithium limiter

Initial surface temp.
Plasma interacting
area

Liquid metal amount

Reservoir

Curvature radius

ENEN

~ 190-200 °C

80

80g

Yes
29 cm

IAEA FEC 2018: Gandhinagar, India

= 290 °C

100

30g

No
130 cm
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TLL was operated at the last closed flux surface

Vis. Spectr. ge|R Camera
n:
l\;"::

HFS LFS

R (mm)
1400

400

< .~ TLL
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Temperature window with TLL up to 1700 °C; high

vapor pressure only near upper end

10000 - 1800
#41546 0 — L
Ts( ), ~ 1600
8000 e
// 1400
N/

;6000 /7 =

Line integral [a.u.]
N\

>
o
(=]
(=]
o

rf temp

4000

, 600
2000} |, :
/ ‘ 400
Sn XXI 204 A |\,
0 . . : 200
00 02 04 06 08 Lo 12 1a 16 18

Time [s]
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Line integral [a.u.]

Temperature window with TLL up to 1700 °C; high

vapor pressure only near upper end

Surface temperature - '41546'

10000 . 1800 2000 :
#41546 T oC _— A e—e ANSYS Simulation
g( ) - - {1600 1800 | — Max Surf. Temperature
8000 1600 L
1400
7\ ;
/ 'U' — — 1400 | )
= (@)
6000 : BT 18 MW/m?
/ a v 1200} |
) A . = >
”;f T ; T 1000 & ©
' € g 1000}
g
4000 800 = o
) = 800 .
o
/™~ 600 600 | 1
2000 ’,/
/ ‘ 400 400 - 1
Sn XX1204 A |\ |
0 ‘ 200 00 0z 04 o6 08 10 12 14 1
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 ) ) ’ ' - ' ' ' '
Time [s] Time [s]

* The difference, after 1s, between ANSYS calculation
and experimental surface temperature could be
explained by “vapour shield” phenomena

m IAEA FEC 2018: Gandhinagar, India 250c¢t2018 26



Core impurity concentrations obtained from UV

spectroscopic analysis

----------------------- = When evaporation becomes

: " re 5 1 dominant the UV spectrum is
oot | AJL n i ' | dominated by Li or Sn lines.
bt et bee 1 From the Zeff measurements
5 i we can respectively infer a
N ' /L'\ concentration of
de )

ST T« ngy/ng ~ 0.05%
g '1 o= Sn \\Sn
% o5 o . ~ 1¢©

| VA AN n,/ng ~ 1%

IAEA FEC 2018: Gandhinagar, India 250c¢t2018 27



D retention in Sn low

« Tin samples exposed in GyM facility
(10°* m2) and analyzed by ion beams

« D concentration of 0.18 at% detected
only in first few hundred nm of sample
surface s |

« No time dependences has been

. . so | 0.18 at%

observed on sample stored in air at l 7

100

1 week —+—
2 months +——«—
5 months +——%—

Integral [a.u)

room temperature (one week - two
months)

Comparing with previous
measurements [1], despite the fluence 0 . . . . . . .
being 50x higher, the D content is LT e
greater by only 2x in at%. Not far from

saturation ?
* Carried out in collaboration with E. Vassallo -Piero Caldirola Institute ~-CNR

Milano , E.Alves and R. Mateus IPFN IST University of Lisbon- Portuga
ENEN [1] J. Louriero et al., JNM 12 (2017) 709
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Flowing liquid metal PFCs performing well in plasmas with
increasingly challenging PMI

» Three generations of flowing liquid lithium limiters
exposed in EAST
- Plasma performance was good
- PMI damage avoidance and improved flow uniformity needed

- Lithium powder dropper successful at eliminating ELMs and
reducing W influx in USN with W PFCs

y v
IAEA FEC 2018: Gandhinagar, India 30ct2018 29
4 4




Flowing liquid metal PFCs performing well in plasmas with
increasingly challenging PMI

» Three generations of flowing liquid lithium limiters
exposed in EAST
- Plasma performance was good
- PMI damage avoidance and improved flow uniformity needed
— Lithium powder dropper successful at eliminating ELMs and
reducing W influx in USN with W PFCs
» Liquid tin limiters exposed in FTU
- No performance degradation with TLL
— High heat flux ~ 18 MW/m? exhausted
- Low core Sn concentration and low D retention in Sn confirmed

» Concepts and designs for liquid metals PFCs for next
step devices and reactors needed

=P, .1 ENEN
!‘S 4 4 IAEA FEC 2018: Gandhinagar, India 30ct2018
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Thank you for this opportunity
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Recycling and ELMs progressively reduced with constant Li
injection rate in EAST

—— 507 6 — 70597
a2 B .
Sr (@ | = 2 —— 70593
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g 07 a 5 | 21-
~ s : A‘M <
oL, 70593 . 0
° 0 2 a 6 8 0 > 4
04oo 02 04 o os 10 Time (s) Time (s)
° « SOLPS analysis shows local divertor recycling
R. Maingi, Nucl. Fusion 58 (2018) 024003; builds coefficient drops by 20%

on R. Maingi, Phys. Rev. Letts. 107 (2011) 145004 « J. Canik, IEEE Trans. Plasma Sci. 46 (2018) 1081; builds

A vy on J. Canik, Phys. Plasmas 18 (2011) 056118
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SOLPS modeling of D_,I' changes indicate level of D
removal with Li powder injection

» 2D plasma/neutrals modeling performed, based on measured upstream n, profiles
before and during Li injection for active recycling control

* Forion fluxes near measured values, SOLPS recycling scans for multiple assumed
upstream conditions are consistent with measured D, I" trends

ngh neupstream Low neupstream

2.5.10 25 ' ' 1-10%%f ]
- AR~20% i et o a
. O /0 S. ﬁ 1.5.1022 E g 6.102‘ :_ A—_—‘//‘// _i
consistent with 5 100, | ;
. : ] = . ]
magnitude of D,,, _5
F W|th L| s-10% 2.5-1029': :
i . _ 610 \ 20107 ]
_ H|gh neupstream_ R 3 1020 T _f
5 41 r 5 F 1
~ 0.99_>O.8 %2 . AD(X=50% E :5_02 1.001020;_ 4 ADa:45% I_;
— upstream- a ] 5.0-10" | E
Low n P ' R . ] y: R
~0.8->0.6 R
' ' 0.025 - E 0.025 r/// 3
% 0'020? //(&Qz % 0-020;‘ E
0.0151 3 0.015 3
E" 0.010F AD/T=25% E E’ 0_0105— I AD/T=25% I_
< 2 — - st | i

0.5 0.6 07 _ 08 0.9 1.0 075 080 085 090 095 1.00

P' r I J. Canik, IEEE Trans. Plasma Sci. 46 (2018) 1081
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ELMs mitigated (eliminated?) with new Li granule dropper
injection on EAST (8/18)

Primary

« Powder (50 um) injection
shown to eliminate ELMs secondary

— Issue: powder has limited fraa=
penetration depth through the

SOL at high power E Plezo. E ;
« Granule dropper (700 um)

deployed for first time and N —
shown to eliminate ELMs Ll

— Most likely due to ne profile
control via wall conditioning:
desire SOL ablation

— Penetration of granules can
be easily controlled, i.e. use
impeller to hit granules in at I
tangential angles to target 215
ablation profile

. Stored Energy . . .

7a y . - Time (s)
N\
!!=\ 4 4 IAEA FEC 2018: Gandhinagar, India 250c¢t2018 34
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ELMs and plasma-materials interactions mitigated with

flowing lithium PFCs and active lithium injection in EAST

« 3" generation flowing liquid
lithium (FLiLi) limiter
inserted into EAST H-modes | -
— Made of a Moybdenum alloy ;
— Recycling reduced and PMI

mitigated with limiter inserted
— Brought HIDRA online to test

— Progressive conditioning | io
— New imaging diagnostics: e ','m N !'“'"",

camera & dual filter technique R I

Time (s)

limiter designs 5 j —— 70597
« ELMs eliminated with real g, |
time lithium powder injection £ o +/Reference
into the upper W divertor 1 —— 70593
41 !_i_pov.vder
:

9 EAST#70592
D.(au)

—
o
N
a
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The liquid metal limiters during the FTU pulse

Equi Psi

e/
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q_edge

LCMS

{ from "ODINB" )
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q_edge

Up to 1.5cm
from the LCMS

494,
4,019
421

Sn

Closed the

4
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Tin surface temperature simulation with ANSYS

~ B1309.68
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