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• Conclusion and discussion



XGC gyrokinetic PIC codes (V&V summary at hbps.pppl.gov)

• XGC: X-point Gyrokinetic Code 
• Steep electrostatic pedestal ordering [Hahm PoP 2009]
• Heat and momentum source in core
• Monte Carlo neutrals with wall recycling
• Fully nonlinear Fokker-Planck Coulomb collision operation
• Logical wall-sheath
• Unstructured triangular mesh

Capabilities
• ES with GK ions + drift-kinetic electrons  [C.S. Chang TH/P7-22, R.M. 

Churchill TH/P7-26, J. Chowdhury TH/P8-7]
• Impurity ions [J. Dominski TH/P6-20]
• RMP or 3D B-field [J.M. Kwon TH/8-1, R. Hager TH/P5-9, G. Park TH/P5-26]
• Stellarator  [M. Cole TH/P6-21, T. Moritaka TH/P5-5]
• EM with fully implicit drift-kinetic electrons (partially verified)
• Gyrokinetic electrons for ETG 
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Different timescales between core and edge
For simplicity, let’s use the drift kinetic equation for this argument

Core f evolves slowly: τ > 1ms
– Near-thermal equilibrium: ! = !# + δ!;

C(δ!), v||/L||, vd/Lr , ev||E||/T , = O()∗ ωbi)
– +,!/+t=O(ρ* ωbi ) 

Edge f evolves fast: τ < 0.1ms
– Non-Maxwellian: ! ≠ !#;

C(!), v||/L||, vd/Lr , ev||E||/T, S= O(ωbi)
– +!/+t=O(ωbi )
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Why has a gyrokinetic L-H study not been done previously?
• Scale-inseparable, nonlocal multiscale in space and time
- Edge turbulence including large-amplitude blobs
- Neoclassical with X-loss
- Neutral particle recycing with ionization and charge exchange
- Overlapping space-time scale: e.g., turbulence correl. width ~ plasma gradient
scale length ~ orbit width ~ ExB shearing width ~ neutral penetration length

• Magnetic separatrix interfacing two different magnetic topologies

• Non-Maxwellian plasma, requiring nonlinear Fokker-Planck collision

• Long global transport equilibrium time >> GK simulation time

àWe thought it would require exascale computer; non-existent yet.
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A new strategy for GK simulation of L-H transition
to make the bifurcation study possible on present HPCs 
• Bifurcation may not be a global transport-equilibrium phenomenon

- But, an edge localized phenomenon [Yan, PRL14; Cziegler, PPFC14, …]
- May not need to wait until GAMs die out [Conway, PRL11; …]

• Study only the edge bifurcation itself, as soon as the L-mode edge
turbulence establishes, without waiting for the pedestal buildup.
- We want to force the bifurcation by having Pedge / PLH ≳ 2
- A forced L-H bifurcation action could be completed in ≲ 0.1ms (Cziegler

PPCF14, Yan, PRL14, and others).

- Take advantage of ≲0.1ms establishment of the nonlinear edge turbulence.
• Low beta electrostatic simulation: EM simulation in near future
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For the present L-H bifurcation study in XGC, we use a low-
beta electrostatic edge plasma

Plasma input condition
• C-Mod #1140613017 in L-mode, single-null, ∇B-drift away from X-point
• βe ≈0.01% < me/mi in the bifurcation layer
• ∇B-drift has been flipped to be into the divertor for this presentation

Include the most important multi physics
• Neoclassical kinetic physics
• Nonlinear electrostatic turbulence
− ITG, TEM, Resistive ballooning, Kelvin-Helmholtz, other drift waves

• Neutral particle recycling with CX and ionization
• Realistic diverted geometry

Electromagnetic correction to the present result is left for a future work.
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• Ion heat flux across ΨΝ ≃0.95 is ~1.8MW and well above PLH
i+e ~ 1-1.5 MW. 

• Edge temperature increases from heat accumulation.

• Transition layer is at 0.96<ΨN<0.98, agreeing with C-Mod, DIII-D [Cziegler PPCF14, Yan 

PRL 14] and other devices.

0.8MW ion heat 
accumulation

(0.151 – 0.174ms)

Ti Te

PLH
i+e ~ 1-1.5 MW

Pion=1.8MW
Pelec=1MW
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Overview of the turbulence behavior at bifurcation
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Two different shearing actions noticed

1. At t~0.175-0.21ms, lower frequency 
turbulence is sheared to higher 
frequency turbulence (by Reynolds-
stress ExB shearing, to be shown).

2. At t>0.21ms, shearing and suppression 
of all frequency turbulence (neoclassical 
ExB shearing, to be shown, Biglari-
Diamond PoF1990)
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VE’ (Hz)

Time-radius behavior of the sheared ExB flow, VE′
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1. tA=0.12ms, VE′ and L-mode turbulence settle down in edge layer 
2. t< tB =0.175ms, L-mode VE′ remains negative in the edge layer (ρ>0) 
3. t~ tB, something pushes the VE′ to >0 in the edge layer (ρ<0): Reynolds
4. t > tC =0.2ms, VE’ locks into mean ExB shearing in the bifurcation layer: neoclassial
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Similar behaviors of Reynolds 
consumption rate has been reported 
in EAST, C-Mod, and DIII-D 
experiments. [Manz PoP12, Tynan 
NF13, Yan PRL14]

• The normalized, turbulence 
Reynolds consumption rate 
! = ⟨$%&$%'⟩)*+ /(.eff$%12/2)
becomes peaked (> 3)  in 
the beginning of the 
bifurcation action, but 
becomes ≤ 1 after that; and 
dies out eventually.

• What is then keeping the 
turbulence suppressed?

[Yan PRL 2014]

Various opinions exist on the role of Reynolds consumption:
- Kobayashi PRL13, Cavedon NF17, Stoltzfus-Dueck PoP16, Diallo NF17 
- Yan PRL14, Schmidt NF17, Tynan NF13, Istvan PPCF14, papers by 
Diamond

tB tC



The X-point orbit-loss [Chang PoP02, Ku 
PoP04] provides the answer

15
[S. Ku et al., PoP 2004]

- The negative Reynolds force is canceled by orbit-loss 
force, and not effective.

- Orbit-loss force is pushing V’ExB further to positive 
direction after 0.175 ms.

- This V’ExB is keeping the turbulence suppressed after 
the bifurcation.
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Electron modes disappeares immediately 
around the transition time

• Figures at right: Time-averaged wavenumber spectrum of the 

turbulence at Ψ!=0.975 

• Top: Before the first-phase "×# shearing starts (t=0.12 - 0.17 ms)

– Both ion and electron modes exist

• Well into the second-phase shearing activities (t=0.22-0.26 ms) 

– Electron modes have disappeared

– Ion modes are being sheared away to higher frequency

• Would be interesting to compare with experimental results. 
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Conclusion and Discussions
• A forced, fast L-H like bifurcation physics has been revealed under favorable magnetic 

drift condition, with transport suppression in both the heat and particle channels.
• The turbulent Reynolds stress and the neoclassical X-loss physics work together in 

achieving the L-H bifurcation.
- How will the geometry and plasma condition change their combination? 
- How will this affect PL-H in 15MA ITER that has small !"/$?

• Fast suppression of electron modes by Reynolds-stress ExB shearing, followed by 
slower suppression of ion modes by neoclassical ExB shearing: experiments?

Not shown in this talk:
• Unfavorable ∇B case shows stronger GAMs. Weakly coherent modes appears during 

the bifurcation.
• Hydrogen isotope simulation gives higher GAM damping and weaker ExB shear
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