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Verified, validated EP models are required in integrated tokamak simulations
• EPs (alphas, NB ions, RF tails) provide main

source of heating, momentum, current drive in
burning plasmas

• But: EPs drive instabilities, instabilities affect EPs

NSTX-U #204202
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Example: modeled NB driven current, results 
differ based on what model is used!

This work: reduced EP transport models being developed, 
validated for time-dependent predictive simulations
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TRANSP is the main platform for testing EP models in Integrated Simulations

• NUBEAM module in TRANSP accounts for (neo)classical EP physics
• Includes scattering, slowing down, atomic physics

NUBEAM step k

Classical EP physics:
apply scattering, slowing 

down; update sources

TRANSP (main) TRANSP (main)

NUBEAM can be inaccurate when EP 
transport is enhanced by instabilities

Ad-hoc transport models:
-> often unphysical

-> no predictive capabilities!

Ad-hoc EP diffusivity:
e.g. adjusted to match 

neutron rate

Phase-space resolved 
reduced EP models:

‘kick’, RBQ-1D

New physics-based models
-> enable predictive capabilities

Constants of Motion variables are used to describe resonant wave-particle 
interaction

Each particle orbit characterized by:
E, energy
Pz~mRvpar-qY, canonical momentum
µ~vperp2/B, magnetic moment

Wave stability (drive):

Resonant interactions obey simple rule:

Define transport probability matrix(es) for NUBEAM:
p(DE,DPz |E,Pz,µ)

“Conditional probability that a particle at (E,Pz,µ) 
receives kicks DE, DPz from wave-particle interaction”

PodestàPPCF 2014, PPCF 2017

Complex orbits in real space translate in simple 
trajectories in phase space

w=2pf : mode frequency
n : toroidal mode number Example: rms energy 

kicks from a m/n=1/1 
fishbone

R. B. White, Theory of toroidally confined plasmas, Imperial College Press (2001)

RBQ-1D and kick models distill physics of wave-particle
interaction for inclusion in p(DE,DPz) transport matrix for NUBEAM

• Both models use mode structure, damping rate from MHD codes, e.g. NOVA/NOVA-K
– Input: thermal profiles, equilibrium

• RBQ-1D based on ‘resonance-broadened quasi-linear’ theory for wave-particle interaction: 
– Use “diffusive transport” approximation -> gaussian p(DPz | E,Pz,µ)
– 1D: assume that transport along canonical momentum Pz dominates
– Computationally efficient

Gorelenkov NF 2018

• ‘Kick’ model: particle-following code ORBIT used to infer transport matrix numerically

Initialize test particles uniformly in 
phase space

Combine DE, DPz from 
same (E,Pz,µ) phase space 

bin into p(DE,DPz )

Repeat for all (E,Pz,µ) bins to 
infer 5D matrix

-> input for NUBEAM: 
p(DE,DPz |E,Pz,µ)

Perturbation from 
NOVA code

rms energy change

Track energy, momentum 
variations (kicks) at fixed 

time intervals

p(DE,DPz )

Podestà PPCF 2014, 2017

localized
resonances

Models can be used for both interpretive and predictive simulations

Interpretive runs:
Ø To validate EP models, analyze actual 

discharges
• Use experimental info to set DE, DPz

– E.g. based on neutron rate, internal 
measurements of mode amplitude

Predictive runs:
Ø To optimize/explore new scenarios
• Use saturation condition to set DE, DPz

– Impose drive = damping vs time

classical TRANSP run

measured Main limitation:
• Can be only as good as damping rate 

estimates!

Podestà PPCF 2017

reduced input from experiment

drive from NUBEAM 
or RBQ-1D

damping from NOVA-K
increase
kicks

• Many practical cases lie in between ‘fully 
interpretive’ & ‘fully predictive’

Models are being verified against theory & first-principles codes

Podestà PPCF 2014, PPCF 2017, NF 2018 Gorelenkov NF 2018, PoP 2018 (in preparation)

• Kick model: good agreement with ORBIT preserved when 
evolving Fnb over 5 ms, typical macro-step of NUBEAM

Good reconstruction over 3 orders of magnitude for
co-, trapped (, counter- not present in this input Fnb) particles

r: correlation 
coefficient
error: (ORBIT-
model)/ORBIT

black: ORBIT
red: Kick Model

• RBQ-1D diffusion solver benchmarked against known 
analytical solutions

• Example: evolution of 
‘test distribution’

• RBQ-1D: solid
• Analytical: dashed
• Bottom plot: evolution of 

relative error

• RBQ-1D computes the expected 
saturation amplitudes and 
corresponding diffusivities

• Include capability of treating 
multiple AE modes simultaneously

• Compute relaxed distribution

• Focus on energetic particle evolution, stability of EP-driven instabilities (e.g. Alfvén Eigenmodes), EP transport by instabilities

• For example, only relative mode amplitudes 
may be known from experiment

• Or: parameters for predictions are adjusted 
based on experimental information

• e.g. limit frequency and mode number range

• Also: thermal profiles are assumed to be 
known in this work!

• For truly predictive simulations, thermal
profiles would need to be recomputed as 
sources change

Probability matrices describe enhanced transport in Monte Carlo module NUBEAM

• �Non-resonant� particles have small 
fluctuations around initial (E, Pz)

• �Resonant� particles can experience 
large DE, DPz variations 

p(DE,DPz) 
Discrete bins in (Pz,E,µ) can contain both resonant and non-resonant particles

• Probability matrix approach not limited to “diffusive” 
transport

• Can account for convective transport
• Skewed PDF

• Can be used to introduce different sources of EP 
transport
• MHD instabilities
• Microturbulence
• 3D fields (still not explored)

NSTX-U and DIII-D scenarios challenge models over broad set of conditions
• DIII-D: NTM-only scenario

• Single (dominant) instability
• Limited number of resonances

• DIII-D: AEs-only scenario
• Large number of weaker AEs
• “Sea” of resonances

• NSTX-U: multi-mode scenario
• Transient scenario, variations in background plasma & heating

sources
• Multiple types of instabilities
• Need to account for possible synergy between different modes

(e.g. fishbones + TAEs + kink)
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fishbones, kink 3x RSAEs, 4x TAEs

11x RSAEs and TAEs

DIII-D discharges with large NTM provides a good test bed for EP transport models
• NTMs destabilized by step-up in NB power

• Dominant 2/1 in this case
• Large NTM amplitude causes EP 

confinement degradation
• Clear drop in neutron rate

DIII-D #170247

magnetic fluctuations

NTMs

Heidbrink NF 2018 Bardóczi PoP 2017
Poli NF 2017 Bardóczi PPCF 2018 (submitted)
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• Kick “interpretive” run:
– Scale kicks to match measured neutrons
– Mode amplitude related to wisland

• Inferred NTM island width agrees with measured 
wisland from ECE
– a posteriori check, validation
– Path towards ‘predictive’ simulations with wisland from 

Modified Rutherford Equation
• Favorable comparison with phase-space resolved 

data (FIDA)
– Acceptable for co-passing, good for counter-passing
– Key exercise for model validation

• Ad-hoc diffusion would give same drop for co/cntr

No instabilities in the AE frequency range 
observed during the time of interest

• Kick & RBQ-1D successfully benchmarked for 
scenario with multiple unstable AEs

• AEs from NOVA/NOVA-K selected based on data from 
ECE, Mirnov coils for mode frequency & mode number

• Amplitudes inferred around t=800ms
• Adjusted vs time to match measured neutron rate

Gorelenkov NF 2018

Kick & RBQ-1D application to DIII-D scenario with multiple unstable AEs

Heidbrink PoP 2016
Collins PRL 2016
Collins NF 2017

TAEs

RSAEs

• Successful comparison with phase-space
resolved data (FIDA, NPA) validates models

• Simulation also reproduces 
dynamic response to NB 
modulation

• Neutron rate: time constants for 
rise/fall consistent with kick model 
results

• Mode amplitude modulation 
roughly consistent with kick model

Retaining phase space resolution is critical for validation

• However: less favorable comparison with FIDA using 
updated calibration
• Need to work closely with experimentalists

Kick model application to NSTX-U scenarios with counter-propagating AEs

Kick model application to NSTX-U multi-mode scenario

Conclusions and future work

Initial assessment of predictive capabilities for AE-induced fast ion transport

• Transition from co- to counter-TAEs as NB ion density 
profile becomes flat/hollow

• Most quantities evolve in time, not suitable for “single-
time-slice” analysis

Podestà NF 2018

• Main features of the experiment can be reproduced
• Reproduces transition co- to counter-TAEs
• Capture time evolution of unstable modes, spectrum, …

co-TAEs only
co- and cntr-TAEs

Towards predictive simulations: need estimate of unstable spectrum, saturated amplitudes

NB power [MW] neutron rate [au]

TAEs

fishbones
kink

TAEsRSAEs

• Need estimate for relative AE amplitudes:
• Use saturation condition (drive=damping) to 
infer AE amplitudes vs time

• Then, rescale fishbone &  kink amplitudes to 

match measured neutron rate
• No damping available (yet)

NSTX-U #204202 • Analysis provides assessment of role of different instabilities 
on EP transport, NB driven current

• AEs and fishbones/kinks cause comparable drop in neutrons
• Fishbones, kinks are mostly responsible for NB ion density 

depletion
•AEs have larger effect on NB ion energy redistribution

• Synergy between modes is observed, e.g. in total EP losses

NSTX-U #204202

• Predictive analysis (AEs only) results generally agree within +/-15% with 
interpretive simulations

Relative difference from interpretive simulations: 
NSTX, NSTX-U and DIII-D database

• However: in some cases, predictive runs fail to reproduce experiments!
– Predicted AE spectrum differs from experiment
– Key role of damping rate from MHD codes

• Affects inferred AE saturation amplitude

• More validation is required to assess model limitations, missing physics

• Verification & Validation being extended for kick & RBQ-1D
• Part of the US Joint Research Target milestone in 2018: “Assess predictive capability of reduced EP transport models”

• Plan to extend RBQ to 2D (canonical momentum & energy)
• Extending kick model to low-f instabilities, e.g. sawteeth, kink/fishbones, NTM

• Reduced models enable efficient simulations retaining (most of) the relevant EP physics
• Including predictive capabilities (ITER & beyond)

• Phase-space resolution is required to move beyond ad-hoc models
• Critical for heating, current drive, thermal transport

• Goal: develop framework to streamline TRANSP analysis including effects of instabilities on EPs


